
AN585
A Real-Time Operating System for PICmicro™ Microcontrollers
INTRODUCTION

Ever dream of having a Real-Time Kernel for the
PIC16CXXX family of microcontrollers? Or ever won-
der what Multitasking or Threads are all about? Then
this article is for you. We will explore how to implement
all of the features of a large Real-Time Multitasking
Kernel in much less space, with more control, and with-
out the large overhead of existing kernels. By planning
ahead, and using the techniques outlined here, you can
build your own fast, light, powerful, flexible real-time
kernel with just the features needed to get the job done.

Included in this article are two large examples: one on
the PIC16C54, and the other on the more powerful
PIC16C64. A “Remote Alarm” is implemented on the
PIC16C54 as an example of a Non-Preemptive Kernel,
with two asynchronous serial input sources capable of
running up to 19,200 Baud along with seven sensors
needing to be debounced as inputs. One more input
line is monitored and causes an internal software
recount. For output, this example has an LED that
shows eight different internal states of the “Remote
Alarm”, blinking at different rates and different
sequences. Last but not least, is an asynchronous
serial output capable of running at 38,400 Baud, pass-
ing the inputs to the next remote alarm station. Several
short and long timers are included to round out the nine
cooperating tasks in this example. Please refer to
Figure 2 and Appendix B.

The second example is implemented on an PIC16C64
featuring an interrupt driven Semi-Preemptive Kernel.
This example has the serial input and output routines of
the first example moved into Interrupt Service Routines
(ISR) for more speed and accuracy. The interrupt capa-
bilities of the PIC16C64 will be explored, and a Real-
Time Multitasking Kernel framework will be developed.
Please refer to Figure 5 and Appendix C.

Author: Jerry Farmer
Myriad Development Company
 1997 Microchip Technology Inc.
Why do I Need a Real-Time Kernel?

Real-time design techniques allow the engineer/
designer to break-up large, complicated problems into
smaller simpler tasks or threads. These more
manageable units of code allow faster response to
important events, while prioritizing the jobs to be done
in a structured well-tested format. The kernel does the
job of keeping the time, the peace between tasks, and
keeping all the tasks’ communication flowing. More
activities can be performed in the same amount of time
by allowing other tasks to work while other tasks are
waiting for some event to occur. Smaller code is also
the result of using State-Driven techniques because
much information is condensed into the state variables
and code structure. If you need an example, look at the
PIC16C54’s “Remote Alarm” code.

What is Multitasking Anyway?

This is the appearance of several tasks working at the
same time. Each task thinks that it owns the CPU, but
this appearance is controlled by the kernel. Only one
task can be running at a time, but there is undone work
that can be done by other tasks not blocked.
Multitasking is the orchestration of interrupts, events,
communication, shared data, and timing to get a job
done. Real-Time Programming is just a bunch of ideas,
concepts, and techniques that allow us to divide
problems into units of code that are based on units of
time, or events that drive a task from one state to
another.
DS00585B-page 5-105

AN585
CONCEPTS

We will cover the basic concepts of kernels here so that
we are using the same definitions when talking about
this difficult topic. This article is a very quick survey on
Real-Time Kernel concepts. I hope to get you thinking,
reading more, and hopefully writing RT Operating
Systems for your current and future projects. Many
great books have been written about this very broad
and interesting subject. We will refer to some of these
books which have a different point of view other than
those expressed in this paper.

Critical Section

A critical section is a shared data structure, or a shared
resource, or a critical time section of code, or a non-re-
entrant section of code that can have only one owner
that is allowed to view/change/use that section at any
one time. These sections must not be interrupted
during the update process. They must be protected so
that other tasks can not get in and change the pointers/
data or modify the hardware at the same time. Remem-
ber that if two tasks can get into a critical section, at the
same time, then data WILL be corrupted. Make sure
that critical sections are small, with time for pending
interrupts to get serviced. Not understanding critical
sections is where the beginning RT programmers get
into the most trouble. Even without interrupts, you must
protect variables that are changing over time, such as
the byte sized variable xmt_byte used in the
PIC16C54 example. This variable changes each time
the STATE changes for the Serial Out Task.
Semaphores, and Disabling Interrupts are two of the
techniques used to coordinate between different tasks
wanting to control a critical section. Task #4 is devoted
to the proper feeding of the shared Serial Out Resource
in the PIC16C54 example. Note the use of the binary
semaphore “OState_B” to control Task #4, Task #1,
and the variable xmt_byte. There are several more
examples of critical sections in the PIC16C64 example
due to the use of interrupts. We disable interrupts for
very short time periods to protect these areas. Also in
the PIC16C64 example, all critical sections are finished
before checking to see if the kernel wants another task
to start running instead of the current task. We will dis-
cuss in more detail how to protect critical sections later
in this article.

FIGURE 1: TASK / PROCESS STATE
TRANSITION DIAGRAM

(Context Switch) (Waiting for Events)

Executing State ISR State

Ready State Waiting State

(Events)
DS00585B-page 5-106
Shared Resources

Data structures, displays, I/O hardware, and non-reen-
trant routines are a few resource examples. If two or
more tasks use these resources, then they are called
Shared Resources and you must protect them from
being corrupted. They must have only one owner, a
way of telling others to wait, and possibly a waiting list
for future users of that resource. A rare example of a
shared resource is when there exists a critical timing
sequence of input and output operations to control
some hardware. You must disable interrupts before
starting this sequence, and re-enable them upon finish-
ing. Note that Task #1 in the PIC16C64 example is an
example of an “non-reentrant” routine that must be fin-
ished by the current owner before another task can use
it.

Context Switch/Task Switch

When one task takes over from another, the current val-
ues of the CPU registers for this running task are saved
and the old saved registers for the new task are
restored. The new task continues where it left off. This
is all done by the Context Switch part of the Real-Time
Kernel. Each task usually has a “context switch storage
area”. Each task’s SP (Stack Pointer pointing into its
own stack) is stored there along with all the other
important saved registers. The “Remote Alarm”
example does not need to use a context switch
because all the important registers are properly freed-
up before each task is finished. The PIC16C64
example uses a similar concept, thus keeping the
number of saved registers per task way down. We use
an old concept called “where I came from”. The variable
“FROM” is used to direct the dispatcher to start up the
task where it left off. This is because you cannot manip-
ulate the stack in the PIC16CXXX family. This same
reason is why we have a “Semi-Preemptive” kernel on
the PIC16C64 as an example. By the way, the faster the
context switch is done, the better.

Scheduler

The scheduler is that part of the kernel that decides
which task will run next. We will talk about several
common types in this section. This is where a lot of
thinking should be done before starting your new
project. By understanding the different kinds of
schedulers and what features and problems each type
has, you can match your problem to a creatively styled
scheduler that meets your needs. For example, the
PIC16C54 example shows the recalling of Tasks #1-3
just before a long sequence of code is executed. More
creative ways can also be implemented, but be careful
to allow all tasks to execute in a timely fashion.

Please see Figure 1. Each task must be in “Ready
State" or the "Executing State" to be considered by the
scheduler to get temporary control of the CPU next.
 1997 Microchip Technology Inc.

AN585
Non-Preemptive Kernel

The Non-Preemptive Kernel is also called a
“Cooperative Kernel” because the tasks only give-up
control when they want/need to in coordination with
other tasks, and events. The “Remote Alarm” example
uses a Non-Preemptive Kernel type, showing that
despite its reputation as being a simple kernel type, a
lot can be done with it. The Non-Preemptive Kernel
type is well suited for the non-interrupt type
PIC16C5Xs. The heart beat of the PIC16C54 example
is the internal TMR0 counter crossing over from a high
value to a low value of the counter. Use the prescaler to
adjust the time units. The very fast tasks continually
read the TMR0 directly comparing the delta of time to
see if it should fire.

Preemptive Kernel

In a Preemptive Kernel, a running task can be swapped
out for a higher priority task when it becomes ready.
The Preemptive Kernel relies much more on interrupts
as its driving force. The context switch is at the heart of
this type of kernel. To implement a true Preemptive Ker-
nel, you must be able to manipulate the stack. This is
why we implemented a “Semi-Preemptive” kernel on
the PIC16C64, with some of the best features of both
types of kernels. We moved some of the tasks in the
PIC16C54 example into ISRs to handle the I/Os. This
works very well as the ISRs are very short and do most
of the real work in this example. The TIMER0 interrupt
is the heart beat for the PIC16C64 example. You must
have a clock interrupt in order to make a true
Preemptive kernel.

Round Robin Scheduler

When the scheduler finds tasks on the ready queue
that have the same priorities, the scheduler often uses
a technique called Round Robin scheduling to make
sure each task gets its day in the sun. This means more
housekeeping to get it right. This is part of the creative
ways you can tailor the scheduler to fit your needs. In
the PIC16C54 example, all tasks will get to run shortly
after their appointed time. This means that no task will
dominate all others in this simple approach. In the
“olden” days of the first Real-Time Operating Systems
the term was used to mean the same as “time slicing”.
The Preemptive Kernels of today are a major step
forward, with their priority schemes, and intertask
communication capabilities.
 1997 Microchip Technology Inc.
Preemptive vs. Non-Preemptive

The Preemptive Kernel is harder to develop, but is eas-
ier to use, and is sometimes used incorrectly. You must
spend more upfront time with the Non-Preemptive Ker-
nel but it is better for more cramped microcontrollers.
You get much better response time between a cause/
event and the response/action for that event with a
Non-Preemptive Kernel. The Preemptive Kernel is
more predictable in the response times, and can be cal-
culated as to the maximum time to complete a given
job. Often the Preemptive Kernel is more expensive.

Reentrancy

In a Preemptive Kernel, two or more tasks may want to
use the same subroutine. The problem is that you can
not control when a task is swapped out and when
another takes its place. Thus, if a subroutine uses only
local or passed variables that are stored only in each
tasks’ stack, then it is call reentrant or a pure routine.
No global variables or hardware may be used in such a
pure routine. A way around this reentrancy requirement
is to treat the whole subroutine as a critical section.

Appendix D is an example of reentrant code segment
as might have been used in the PIC16C54 code
example.

Task Priority

Some tasks are not created equal. Some jobs must be
done on time or data will be lost. Make the tasks that
must get done the highest priority and go down the
scale from there. Some kernels make you have a
different priority for each task. This is a good idea and
requires some thought before coding to make the
design work.

Static vs. Dynamic Priorities and Priority
Inversions

For most embedded Real-Time Kernels, both static
priorities and static tasks are used. Dynamic priorities
are sometimes used to solve deadlock and other
complex situations that arise from not understanding
the problem and not understanding Real-Time
Techniques. If the need for dynamic priorities seem to
occur, you should relook at how you divided the prob-
lem, and divide less so as to include the resources in
question under one semaphore. You could divide the
problem more to have more tasks not needing two or
more resources to complete its job, and have the new
tasks talk more together.
DS00585B-page 5-107

AN585
As for Dynamic tasks, you should define the problem so
as to know, ahead of coding, the continuous use of all
tasks. You will need more upfront time in the planning
stage to get all tasks talking, but it is well worth it to
keep Dynamic Priorities and Dynamic Tasking out of
the kernel design.

Priority Inversions is a trick used to get past a poorly
designed system by inverting the priorities to allow
lower tasks to run that were previously blocked. This is
a cheap trick, and is best kept out of a Real-Time Ker-
nel. Use the other techniques outlined in this section to
solve this kind of problem.

Semaphores

There are basically two types: binary and counting
semaphores. The binary semaphore allows only one
owner, and all other tasks wanting access are made to
wait. The counting semaphore keeps a list of users that
need access. Semaphores can be used in many ways.
We will illustrate most of them in the following para-
graphs. Note that you can implement counting sema-
phores using binary semaphores.

Mutual Exclusion

We have touched on the subject of Mutual Exclusion
earlier (a method to exclude other tasks from gaining
access to critical sections). Mutual Exclusion is the
process of excluding others from access to the shared
resources. To make a semaphore is a very complicated
process. The semaphore’s construction must be
atomic. That means that once the process has started,
it can not be interrupted until it has saved the name of
the new owner. From there on, it knows that no one else
can break-in and change owners. We have
implemented a binary semaphore using bits and kernel
functions to mutually exclude access in the PIC16C54
example.

In the PIC16C64 example, we also disable interrupts to
get the same effect. There are at least two good ways
of implementing a binary semaphore. The first and
oldest way was discovered by a Dutch mathematician
named Dekker. We will refer you to a book that talks
more about this algorithm. The second method of
implementing a binary semaphore was also discovered
by another Dutchman named Dijkstra. This method
uses the “testandset” type instruction and is much more
important to us. We used the dec & jump if not
zero instruction (see PIC16C64 example).

Deadlock

Deadlock is a condition where two or more tasks own
resources that other tasks need to complete there
assignment but will not release their own resources
until the other tasks release theirs. Talk about
cooperation. Please read section, "Static vs. Dynamic
Priorities and Priority Inversions" for a discussion about
such problems and ways to solve them. The root of
such problems is not understanding the original
problem.
DS00585B-page 5-108
Synchronization

Semaphores can be used to synchronize tasks so that
messages can be passed between them. Also tasks
can be started up by semaphores, stopped by
semaphores, or started together. They are the
foundation blocks for Real-Time Programming. Once
you have built a binary semaphore for your kernel, you
can build very complex semaphores to synchronize
anything. In the PIC16C54 example, data from several
sources are passed out the Serial Port Resource.
Task #4 synchronizes the other tasks trying to send
data out and synchronizes with task #1 to get it done.
When task #1 is running, then task #4 can not run until
task #1 is ready for more data to send out.

Intertask Communication

We have touched on this topic already, but for large ker-
nels, one can include more complex communication
methods to pass data/messages between tasks. Much
of the handshaking is done for you inside the kernel.
This takes a lot more space and execution speed to
implement them in a kernel.

Event Flags

We implemented Event Flags as simple bits having two
states (on and off). More info can be stored per Event
Flag such as time it was recorded, by who, and who the
event belongs to, and whether data was lost.

Message Mailboxes

This is a nice feature to have if you have the ram space.
Mailboxes allow the designer to pass messages
between tasks, and allows messages to be looked at
when the task is ready, and to reply telling the sender
that the message was received. One message can be
sent to many tasks at the same time.

Message Queues

This again is a very nice feature if you have the execu-
tion time, and the ram to implement them. This feature
is related to Mailboxes, in that you can store several
messages even after reading, to be processed later. If
you want to only operate on the highest prioritized
messages before handling the rest, this is allowed. You
can be very fancy with the Mailboxes and Queues. If
you have them, use them.
 1997 Microchip Technology Inc.

AN585
Interrupts

Interrupts are one of the best inventions to come along
for solving Real-Time problems. You can get very quick
response to the need, and then go back to what you
were doing. The only problem is that they can and do
happen at the worst times. That means that you must
learn how to turn them on and off to protect your critical
sections. Note that before an interrupt can be handled,
you must save all important registers so that you can
restore them so that the kernel can restart the task
where it left off. This is much like the context switch
issue, but for interrupts, you must always save and
restore. In the PIC16C64 example, the Status, W, and
FSR registers are saved in RAM because of the
interrupt. The PC register is saved onto the stack by
hardware.

Interrupt Latency, Response and Recovery

Interrupt Latency is defined as the largest time period
that interrupts are disabled, plus the time it takes for the
ISR to start to execute.

The Interrupt Response Time is defined for a Non-
Preemptive system as Interrupt Latency plus the
“context saving time.” For a Preemptive system, add
the execution time for the kernel to record the interrupt.

Interrupt Recovery Time for a Non-Preemptive system
is defined as the time to restore the saved context and
for the restarting of the task that was interrupted.
Interrupt Recovery Time for a Preemptive system is the
same as for the Non-Preemptive system plus the time
the kernel takes in the scheduler deciding which task to
run next. These measurements are how most kernels
are compared with each other. The PIC16C64 example
does very well in these measurements. That is
because of the PIC16CXXX processor and that they
are mostly a Non-Preemptive system. You must keep
the time you disable interrupts to a minimum in any ker-
nel you write or any task that you write. You should
break-up long sequences of instructions to allow for
interrupts that are already waiting to execute.
 1997 Microchip Technology Inc.
ISR Processing Time

ISR (Interrupt Service Routine) Processing Time is
defined as the time an ISR keeps control of the CPU.
This amount of time should be short, and if a lot of
processing needs to be done in a ISR, then break up
the ISR. The new ISR should now just store the new
data and return. Next, create a new task and move the
extra code from the old ISR into the new task.
Remember that the longer you are in one interrupt, the
longer you can not answer another pressing interrupt.

Nesting interrupts are where the interrupt with a higher
priority can interrupt a lower priority interrupt. Care
must be used, as different interrupts may have critical
sections too, and disabling interrupts must be used
here too to protect critical sections. Nesting of
interrupts may not exist on all microcontrollers, such as
the PIC16CXXX family.

Non-Maskable Interrupts

On some microprocessors, you can enable/disable
selected interrupts, such as on the PICmicro family.
This is a great tool to control the flow of data into the
system and out. Some systems have what is called
Non-Maskable Interrupts. Here you can not turn them
off by software masking. These NMIs as they are call
for short, are used as clock Ticks, because you do not
want problems with complex critical sections on a
interrupt that you can not turn off. The PIC16CXXX
family does not have any NMIs. NMIs are not as useful
as maskable interrupts.

Clock Tick

The Clock Tick, is the heart beat of the system. This is
how the kernel keeps time (relative & absolute). This is
how the kernel is restarted to see if there is a delay that
has finished, so that the task can be moved into the
ready state. In the PIC16C54 example, the Timer0
clock is used. In the PIC16C64 example, Timer0 is
used. You must have a clock interrupt in order to make
a true Preemptive kernel. This is the other reason why
we implemented a Non-Preemptive Kernel on the
PIC16C54 - no clock interrupt.
DS00585B-page 5-109

AN585
ANALYSIS OF CODE EXAMPLES

These sections are the real meat of this article. In these
sections we will explain how the concepts are put to
practical use line by line in each of the two main
examples - PIC16C54 (Appendix C) and PIC16C64
(Appendix D).

We will also examine a short reentrant code example in
Appendix B. We will give some ideas on how to expand
the examples and how far and how fast the examples
can be pushed. Be sure to read both sections on the
two examples.

The “Remote Alarm” application has many interesting
features. The concept is to have as many tiers of units
like a tree feeding into the lower level units the status of
each of the larger branches to one central point. Each
unit can detect any changes in status before the
intruder shuts that unit down, or tampers with it. If any
unit’s power or wires connecting it down the tree are
cut, the lack of the flow of status and passwords would
be noticed in five seconds and reported down the line.
The two Serial Input lines per unit receive the status
and passwords from it’s two larger branches, checking
the data and passing the info down the line by its own
Serial Output line. The seven input status lines are
debounced in these examples, showing the technique.

The LED on each unit reports the status at that node as
to the importance of its own seven input status lines
and the status flowing down the line. The level
indication outputted on the LED continues at the last
highest level until either a reset is received on the
“Reset State” line or five minutes of no new activity on
the seven input status lines are received. When either
of these two events occur, the level of the LED output is
adjusted to the current level of input. Some of the fea-
tures are changed for this article (Figure 2 and
Figure 5).

Another Embedded System use of this type of “Remote
Alarm” application is that of placing the unit on the
outside of a safe. Hopefully the intruder would be
detected before arriving at the unit itself. The
continuous stream of status and passwords to the
larger unit inside would slow down any simple theft.

PIC16C54 - “Remote Alarm” Example

This example is a cross between a true application and
an attempt to show new concepts and some extra
features for show. Some of the application specific
code has been removed to show more clearly the
possibilities of a Real-time Operating System on the
PICmicro family. We chose the Baud rate for the Serial
output to be twice the speed of the two Serial inputs
because it is harder to accurately output a precise
Serial Output than it is to monitor Serial inputs.
DS00585B-page 5-110
FIGURE 2: REMOTE ALARM-PIC16C54
EXAMPLE

This example operates at 4 Mhz. By simply increasing
the crystal speed to 8 MHz, the two Asynchronous
input Serial Baud rates increase from 4800 Baud to
9600 Baud. The Serial Output Baud rate increases
from 9600 Baud to 19,200 Baud. By increasing the
crystal speed to 16 MHz, it will increase the Baud rates
to 19,200 Baud for the two independent Asynchronous
inputs, and increase the baud rate for the
Asynchronous Serial output to 38,400 Baud. By
adjusting the constants in the code for the Serial
routines, other Baud rates can be achieved at other
crystal speeds. Note that you must use a very stable
crystal setup and NOT an RC combination to run these
examples.

We will now give a quick outline of the PIC16C54 code
example. Lines 1-85 are the equates for this program.
Lines 88-95 are simple jump tables so as to save some
of the precious “first 256 bytes” of each page. The
Serial Output Routines - Task #1 are in lines 97-159.
Task #7’s subroutines start at line 160 and continue to
line 277. In this section, the LED output is controlled.
The subroutine QCheck_T123, lines 278-301, is used
to allow the checking of Tasks #1-3 to see if they are
ready to execute before a long section of code in a
slower Task is about to be executed. This is a creative
way for the Kernel’s Scheduler to makes sure that the
highest Prioritized Tasks get serviced before the less
important tasks get executed. Task #2 starts at line
302. This task reads the Serial Input #1 for
Asynchronous data. Task #2 can be described as a
State Machine for outputting a byte Serially. Task #3
interrupts the code of Task #2 at line 333 and continues
until line 362. Task #3 also reads the Serial Input but on
input #2. Task #2’s subroutines continue at line 363 and
continue until line 423. Task #3’s subroutines continue
at line 424 and continue until line 484 is reached. The
main or starting code is started at line 485. From that
line to line 515, all variables are initialized, and all tasks
are initialized at this time also. The Main Loop is started
at line 516 and ends at line 665. This is where the real
action is done. Each task checks the time to see if the
conditions are correct for it to run. The tasks that are
not Blocked, and have a job to do now are in a Ready
State. In the Main Loop, we check the current state of

Serial IN 1

Serial IN 2

7 Sensors IN

Reset State

LED Level

Serial OUT

PIC16C54

Remote
Alarm
 1997 Microchip Technology Inc.

AN585
each task in order of Priority (1-9). If ready, we do a
very simple Task Switch and place that task in the
Executing State/Running State. Several time unit
changes take place in the Main Loop. Tasks #1-4 use 2
µs as a time base by reading the TMR0 directly. A time
unit change takes place at lines 562-575 to 512 µs per
unit for Tasks #5-6. Another time unit change takes
place for Tasks #7-9, to 131072 µs per unit. For Tasks
#5-9, each task counts the time units and compares
them to their standard for activation or activity. Task #4
starts at line 538 and finishes at line 561. Task #4 con-
trols the feeding of Task #1 from several other tasks
that want data to be outputted. It uses several Sema-
phores to make sure that Task #1 is not bothered until
it is ready for another byte. Task #5 monitors the Level
Reset Line, and is always running. It simply resets the
status of the LED, to be recalculated in Task #6. Task
#5 runs through lines 576-581, and is very short. Lines
582-611 represent Task #6. Here we debounce the
seven sensor input lines, leaving the current standard
in the variable “Old_RB”. Task #6 asks/Signals Task #4
to output the current standard out the Serial pin. Task
#7’s main code is lines 621-628. Task #8 is a five sec-
ond lack of activity timer, and exists in lines 629-645. If
no data comes from either of the two input Serial lines,
then Task #8 Signals Task #4 to send a special byte to
be outputted by Task #1. This Signals the next “Remote
Alarm” of the lack of communication between units.
The last task is Task #9. This is a five minute lack of
Severe Errors the from Sensor Reset Timer. Lines 646-
663 compose Task #9. Subroutine Do_D_H_E_L starts
at line 667 and continues through to line 692. This
routine determines the Highest Error Level, and passes
Task #7, the current state, to output on the LED. Lines
693-703, clear the registers #7-1Fh. The “jump at
Power-On” code is the last lines 705-706.

The following sections describe in more detail how and
what each part of the code does and why. The code
segment lines 1-87 are explained in this paragraph.
Line 4 tells the MPASM assembler which PICmicro you
are using. The include file PICREG.H follows with the
equates and assignments to make the code more
readable and changeable. You should use equates that
relate symbols to each other. The Constants lines
10-12 are the values to change for different Baud rates.
They represent the Bit Times for the Baud rates divided
by 2 minus some latency factor. You might have to
adjust the “Fudge Factor” and other values to fine tune
the performance. The value used for the “Fudge
Factor” is related to the longest path of code. Lines 21-
24 are an experiment that allows a simple name to be
associated to a single bit. This allows for easily
changeable assignments. Lines 30-54 are the variable
assignments. Variables (lines 35-39) are used as time
counters. They count the number of units of time, and
are compared to literals to see if an Event has just
happened. The bits defined in lines 57-64 are used as
Binary Semaphores. They keep Critical Sections of
data protected. We will see them in action later in the
code. The bits defined in lines 67-73 are error flags.
 1997 Microchip Technology Inc.
They define the current or last error states of the Serial
routines, and whether data was lost coming in or out.
The section of equates in lines 76-85 are used to define
the different LED activity. They are used by Task #7 to
keep the LED blinking. In lines 89-94, we try to save the
all important first 256 bytes of any page.

Task #1 outputs a byte Asynchronously over the Serial
Output pin. Task #1 is started at line 98. The time units
used for Tasks #1-4 are 2µS. We first sample the TMR0
and store the count. When Tasks #1-4 are then allowed
to run, they check the difference between the first
sample and the current time. If the delta is greater than
or equal to the delay, then that Event has just
happened. We first check if the state of the Serial
Output is zero. We then jump to OStateS to start the
outputting of the “Start Bit”. Because any Serial Output
timings must be rock solid, we use a trick in lines 101-
116 that helps greatly. We check if we are within a
certain amount of time BEFORE the deadline and then
wait for the time to output another bit. This trick allows
us to be within a certain ± amount of time within the
expected time to output that bit. With this code, we are
about <±8% accurate for the Serial Output. You can
only use this trick on the most critical tasks, and only on
one. In this section of code, we are constantly checking
the delta of time from the “FIRST_TMR0_O” reading
and the current reading of TMR0. When we are very
close to the output time, we jump to line 117. If we are
not even close to the proper time, we exit back to the
main loop, so we can check the other timers and tasks.
Now look at Figure 4 for a description of the Output
Pulses, the “Bit units of Time”, and the associated state
numbers. Note that the activities are spread out over
time.

The timer Events help to define the different states and
their associated output activities. Each Event is
handled in a very short, well-defined set of code as
Task #1. Lines 117-131, are a quick state jump table.
You need to break all Real-Time code into very short
segments in and then out. Each segment is just a
few lines long. You do your activity, save status, and
increment to the next state. Notice that OState0_7 code
is used several times to output all 8 bits. The state vari-
able is used also to count the number of bits already
outputted. The time to the next outputting of a bit is cal-
culated and is adjusted to take out the accumulation of
errors in lines 151-152. We make sure of a full “Stop
Bit” length in the OStateE code. In the OStateL code,
we reset the OState variable to zero, and tell the world
that we are not outputting now in line 157. This is impor-
tant because we use that bit (OState_B) to Signal that
we need to protect the variable xmt_byte that changes
over several states. We also use it to Signal that we are
ready for another byte to output. Look at Task #4. See
how it uses this Semaphore to full advantage. We have
just explained a Critical Segment variable as outlined in
the theory sections of this article.
DS00585B-page 5-111

AN585
Task #2 reads the Serial Input line 1, running at 4800
Baud. The code structure is very similar to that of
Task #1 (Figure 3). Notice that there are more states
than the Serial Output Task #1. Once the “Start Bit” is
detected, we half step into the “Start Bit” to see if it was
a “False Start” or not. We then sample and store the
incoming bits to form an 8-bit byte just like Task #1. We
sample the “Stop Bit” to see if it is a “Frame Error”. We
delay another 1/2 bit to get to the end of the “Stop Bit”
if there was an “Frame Error” before resetting Task #1’s
state to 0. Otherwise, we reset Task #1’s state to 0, and
Signal that we are ready for another “Start Bit”. The just
received byte is stored in variable “RCV_Storage”. A
check is made to see if we already sent out the last
received byte before clobbering the old byte with the
new byte.

Task #3 reads the Serial Input line 2, running at 4800
Baud. The code structure is the same as Task #2
Figure 3). The received byte is also put into the same
storage variable as Task #2 - “RCV_Storage”. When
either Task #2 or Task #3 receives a valid byte, Task
#8’s counter is reset. You can up the Baud rate of Task
#2 and 3 if you lower the output Baud rate of Task #1.
Note that for reading the Serial Input Lines, you can be
off by ±15% for each sampling, but not accumulatively.
DS00585B-page 5-112
Task #4 finds the next buffered byte to send out through
Task #1. Task #4 also controls the order of which byte
goes first over another less important byte of data. It
can be said that Task #1 Blocks Task #4 from running.
You can think of the Serial Output Line as a Shared
Resource. The use of Semaphores here allow the
Synchronization of data and actions.

Task #5 monitors the Level Reset Input Line and will
reset the LED state variable if the line ever goes low.
This task is always in the Ready State. This task is said
to simply “pole the input line” when ever it can.

Task #6 debounces the seven sensor input lines,
running every 20 ms. The variable “T_20_mS_CO” is
incremented every 512 µs (Clock Tick) and is com-
pared to the count needed to equal 20 ms. If it is time,
the subroutine QCheck_T123 is called to see if Tasks
#1-3 are in the Ready State. If any of the Tasks #1-3 are
ready, they are ran and we then continue with Task #6.
We compare the current value of the input Port_B to
see if it stayed the same from the last reading 20 ms
back. If the two readings are the same, then Port_B is
considered to be stable and the possibly new value is
placed in the variable “Old_RB” to be outputted by Task
#1. The subroutine D_H_E_L is called to determine the
new LED state. We then check if Task #1 was too busy
to output the last sensor status byte, if so then that error
is recorded.
FIGURE 3: SERIAL INPUT STATES vs. TIME DIAGRAM

FIGURE 4: SERIAL OUTPUT STATES vs. TIME DIAGRAM

Start 0 1 2 3 4 5 6 7 Stop
Bit Bit

State 0 1 2 3 4 5 6 7 8 9 A B

1/2 1 1 1 1 1 1 1 1 1 1/2 (Bit unit of time)

First Detected

Start 0 1 2 3 4 5 6 7 Stop
Bit Bit

State 0 1 2 3 4 5 6 7 8 9 A

1 1 1 1 1 1 1 1 1 1 (Bit unit of time)
 1997 Microchip Technology Inc.

AN585
Task #7 outputs the Highest Severity Level Indication
on the LED. Do_LED starts at line 161, and continues
to 276. This task is also broken into small time units of
code. It is constantly checking to see if it is time to
switch the on/off condition of the LED. The time units for
Task #7 are regulated by the code in lines 613-619.
131072 µS = time unit for Tasks #7-9. Task #7 has
many state jump tables so it is included in the first 256
bytes of the first page. Lines 168-175 explain the on
and off sequences and offs that represent levels of
severity of the input status lines. The variable
“LED_Mode” has both Task #7’s current state number
and the sub-state-number for that state’s output
sequence.

Task #8 is a 5 second lack of input from either of the two
Serial input timers. Tasks #2 and #3 will reset the time
counter for Task #8, when either receives a full byte. If
the time counter “T_5_S_CO” equals 5 secs, then the
LED’s state is bumped to the highest, and a special
byte is sent down the line to the next “Remote Alarm”
unit. The counter variable is reset, and count starts all
over. We then check if Task #1 was too busy to output
the last special status byte, if so then that error is
recorded.

Task #9 measures 5 minutes of calm on the 7 sensor
lines and then resets the LED’s state. Task #9 needs 16
bits of counter power to record 5 minutes of time. The
counter variables are reset after being triggered.

Do_D_H_E_L determines the LED’s next state based
on the 7 sensor input status. This subroutine checks
each bit to see if it is active and then checks if a change
in the LED’s current state needs changing.

Do_Clear_Regs clears registers 7-1Fh. It leaves the
FSR register zeroed out. This is very important for the
PIC16C57 chip.

PIC16C64 - “Remote Alarm64” Example

This example is the same as the PIC16C54 example
with a few changes to take advantage of the three
timers on the PIC16C64 and interrupts. The second
Serial input routine was replaced by an example of a
software PWM (Pulse Width Modulation) example. The
same code as the PIC16C54 example will run on the
PIC16C64 with very few changes using only the TMR0
(TMR0). Be sure to read about the PIC16C54 example,
as the comments will not be repeated, except to make
a strong point.

FIGURE 5: REMOTE ALARM - PIC16C64
EXAMPLE

Serial IN

7 Sensors IN

Reset State

LED Level

Serial OUT

Software PWM

PIC16C64

Remote
Alarm
 1997 Microchip Technology Inc.
This example operates at 4 Mhz. By simply increasing
the crystal speeds, you can change the input and
output Baud rates just as outlined in the section on the
PIC16C54 example’s crystal selection. By adjusting
the constants in the code for the Serial routines, other
Baud rates can be achieved at other crystal speeds.

We will now give a quick outline of the PIC16C64 code
example. Lines 1-78 are the equates for this program.
Notice that there is no need for jump tables for
subroutines to be in the “first 256 bytes” of each page
as there was in the PIC16C54 example. Note that the
“Reset Vector” is now at code address 0, and the
“Interrupt Vector” is at code address 4. Task #1 and 2
have been simplified greatly by using interrupts and
timers. For Task #1, we no longer need to use the “trick”
any more. It is time to execute once the routines for
Task #1 and others are called. The section of code that
handles the “Start Bit” (OStateS) lines 106-122 has
been changed to setting up TMR2 with its interrupt to
trigger the next call to this subroutine. The initial CALL
to this subroutine was by Task #4, but later calls are due
to Timer 2’s interrupts. The amount of time until the
next interrupt is set by each state’s code. This amount
is based on the “Bit Unit of Time” which is based on
Baud rate and crystal speed. An easy change to the
code is to add a software selectable and “changeable
on the fly” Baud rate. This is done by having a variable
that selects the new Baud rate from the two data tables.
One table gets you the Bit Delay value - see line 110.
The other data table gets the value to be put into
T2CON - see line 107, which selects the Post and Pre-
scalers. You may need to adjust the Bit Delay value to
take in account the Interrupt Latency. The OStateL
state code shuts down Timer2 and its interrupt. See
lines 647-676 to understand how we get here by
interrupt. Once Timer 2’s count equals the count we put
into register PR2, we get an interrupt if the following
three conditions are true:

1. Not already in an interrupt. When the current
interrupt is done, our interrupt will be executed.

2. GIE and PEIE bits are set.
3. TMR2IE bit is set.

Remember to clear the Flag bit as in line 114 before
returning from an interrupt. Return from this subroutine
will return you back to Task #4 or back to the ISR
handle lines 647-676 depending on who called this
routine. The Task #7’s subroutines are the same as in
the PIC16C54 example, lines 151-268. Task #2 is
different from the previous example, lines 288-380.
First Task #2 uses two interrupts. The INT interrupt on
pin RB0/INT is used to detect the “Start Bit”. It is very
accurate. It is turned off after the detection in I1StateS
code. The second interrupt TMR1 is then Enabled in
the I1StateS code. Timer1 is then used to cause an
interrupt for all the other states for Task #2. Notice that

Note: You must use a very stable crystal setup
and NOT an RC combination to run these
examples.
DS00585B-page 5-113

AN585
Timer1 has a 16-bit counter and we calculate the
amount of Clock Ticks until overflow in lines 329-333. In
the state code I1StateL, TMR1 is shut down, and the
INT interrupt is now Enabled so as to detect the next
input byte. The initializing of the PIC16C64 variable
takes place in lines 383-426. The initializing of the tasks
take place in lines 427-451. Notice that the last bit to be
set is the GIE bit in line 451 after ALL is setup. There
are several ways to execute the Task #3-9 code: by
Timer0 overflow interrupt, by having the code be in the
background as in this example. The trade-offs are
many, and too deep for this article. Notice that the
subroutine QCheck_T123 is not needed in this method.
Timer0 overflow interrupt sets the flag: Time_Bit. The
code in lines 454-457 can be considered the “IDLE
Task” on some systems. It waits for a Clock Tick from
TMR0’s overflow. Task #3 is new, and is a simple 8-bit
software PWM. Lines 459-478 show how to have 8 bits
of ON, and 8 bits of OFF. This task has two states, on
and off. You may add to the code by allowing the Real-
Time changing of the 8-bit values under software
control. When you change the values in the variables
PWM_Out and PWM_In, disable all interrupts by using
the following line: BCF INTCON,GIE, and enable all
interrupts by using the following line: BSF
INTCON,GIE. The new values will be used at the next
transition, thus allowing a smooth change. This task
could easily be used in the PIC16C54 example type
Kernel. Task #4 is the same except that it calls Task
#1’s subroutine to initiate the outputting of a byte. See
line 503. Tasks #5-9 are the same as in the PIC16C54
example. The subroutines: D_H_E_L and
Clear_Regs are the same in both examples. The
TMR0 (Timer0) Overflow interrupt ISR (Interrupt Ser-
vice Routine) is lines 641-645. This ISR will set the
Time_Bit bit and clear the Flag that caused the inter-
rupt. The Interrupt code lines 647-676 handles the sav-
ing of the Context Registers and the restoring of the
Context Registers (W, Status, FSR) and by checking
the order which interrupts are to be handled first - see
lines 656-669. A very important line is 654. You must
set the memory page pointers here for the ISR rou-
tines! Line 676 is the only place that an interrupt is
allowed to return and set the GIE bit (RETFIE).
DS00585B-page 5-114
Reentrant example

See Appendix B for the short code segment. This code
corresponds to lines 302-332 in the PIC16C54
example. The purpose of reentrant code is to allow two
or more tasks to use the same code at the “same time”.
See the section about reentrant in the theory section of
this article. Notice how the registers 18h-1Bh match the
registers 1Ch-1Fh, both starting with the state variable
for the two tasks using this routine. Note how Task #2
and Task #3 load a pointer to the state variable for their
task before calling DO_I State code. By using the FSR
register as a pointer, and incrementing or decrementing
the FSR register, you can keep the variables in the two
tasks straight even if the two tasks are using different
code in the subroutine at any one time. This method is
not easy to implement, as can be seen, so use two cop-
ies for readability instead, like the PIC16C54 example.

SUMMARY

Now that the PICmicro family of microcontrollers have
a way of executing Real-Time Programs, using the
techniques outlined in this article, there is very little that
PICmicros cannot do! Much more than was ever
dreamed before. Many of you will quickly understand
and start modifying these examples. Great. That
means that we have done our job at Myriad. A few of
you may want more help. Great. At Myriad
Development Co., we LOVE the PICmicro family.
 1997 Microchip Technology Inc.

AN585
BIBLIOGRAPHY

Foster, Caxton C.

Real Time Programming - Neglected Topics

Reading, Massachusetts

Addison-Wesley Publishing Company, 1981

Holt, R.C., Graham, G.S., Lazowska, E.D., Scott, M.A.

Structured CONCURRENT PROGRAMMING with Operating Systems Applications

Reading, Massachusetts

Addison-Wesley Publishing Company, 1978

Kaisler, Stephen H.

The Design of Operating Systems for Small Computer Systems

New York, NY

John Wiley & Sons, 1983

Labrosse, Jean J.

uC/OS - The Real-Time Kernel

Lawrence, Kansas

R & D Publications, 1992

Loeliger, R.G.

Threaded Interpretive Languages

Peterborough, NH

BYTE BOOKS, 1981
 1997 Microchip Technology Inc. DS00585B-page 5-115

AN585
APPENDIX A:
A Real-Time Vocabulary

ASYNCHRONOUS - An activity that can happen at any moment, at any time.

BLOCKING - The act of wanting to waiting for an EVENT before continuing.

CLOCK TICK - The heart beat that all time is based on.

CONTEXT/TASK SWITCH - Module that saves and restores the states of a task.

CRITICAL SECTION - Section of code or hardware - only one user at a time.

DEADLOCK - That is where two TASKs are waiting for each others resources.

DISPATCHING - The act of starting up a TASK to run from an RT Kernel.

DYNAMIC PRIORITIES - The ability for TASKs to have there PRIORITIES changed.

DYNAMIC TASKING - The creation and the killing of TASKs.

EMBEDDED SYSTEM - An internal system that operates all by itself.

ENABLING/DISABLING INTERRUPTS - Controlling the interrupting processing.

EVENT - Timer, communication, handshaking, interrupts, data, external events.

EVENT FLAGS - The storage of current states or info on what has happened.

INTERRUPT - A hardware event (external/internal) that triggers a jump to the ISR routines to handle that event.

INTERRUPT LATENCY - How long it takes once signaled to start an ISR.

INTERRUPT RECOVERY - How long it takes once interrupted to return back to code.

KERNEL - Module that controls TASKs, INTERRUPTs, and intertask communications.

MAILBOXES - Away to pass data from one TASK to another.

MASKABLE INTERRUPTS - The ability to control whether an ISR is called or not.

MULTITASKING - The act of several TASKs thinking they own the CPU.

MUTUAL EXCLUSION - The act of allowing only ONE owner to a RESOURCE.

NMI - NON-MASKABLE INTERRUPT - Can not be turned off by software.

READY STATE - Referring to a list of TASKs ready (having work to do NOW).

REENTRANT - Code that can be used by several TASKs at the same time.

RESOURCE - Data structures, display, I/O hardware, non-reentrant routines.

RUNNING STATE - Referring to the ONE task owning/using the CPU currently .

SCHEDULER - That part of a kernel that decides which TASK to run next.

SEMAPHORES - A protocol to control RESOURCES, SIGNAL EVENTS, synchronize tasks.

SIGNAL - The act of one task signaling another that something has happened.

STATE MACHINE - An important concept in dividing a job into TASKs & ISRs.

SYNCHRONIZATION - Were TASKs synchronize over data or at a special time.

TASK PRIORITY - Each TASK is ranked as to its importance to getting done.

TASK/THREAD - Code that is defined by a small coherent job/work to be done.

TIME SLICING - The act of giving the same amount of “time” to each TASK to run.

TRAP - A software caused interrupt, useful for system access.

WAITING STATE - Referring to a list of TASKs waiting for an EVENT(s).
DS00585B-page 5-116 1997 Microchip Technology Inc.

AN585
APPENDIX B:

MPASM 01.40 Released APP_B.ASM 1-16-1997 17:09:04 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 list p=16C54,t=ON,c=132
 00002 ;
 00003 ;***
 00004 ;
 00005 ; ‘Reentrant Code Example’ Designed by Myriad Development Co. - Jerry
Farmer
 00006 ; PIC16C54, 4MHz Crystal, WatchDog Timer OFF
 00007 ;
 00008 ; Program: APP_B.ASM
 00009 ; Revision Date:
 00010 ; 1-15-97 Compatibility with MPASMWIN 1.40
 00011 ;
 00012 ;***
 00013 ;
 00014 ; Register Files
 00000018 00015 IState1 equ 18h ;Serial In #1 State
 00000019 00016 First_TMR0_I1 equ 19h ;Starting time for next #1 Input event
 0000001A 00017 nbti1 equ 1Ah ;Next Bit #1 In Time - variable time
 0000001B 00018 rcv_byte_1 equ 1Bh ;Receive Serial #1 In byte
 0000001C 00019 IState2 equ 1Ch ;Serial In #2 State
 0000001D 00020 First_TMR0_I2 equ 1Dh ;Starting time for next #2 Input event
 0000001E 00021 nbti2 equ 1Eh ;Next Bit #2 In Time - variable time
 0000001F 00022 rcv_byte_2 equ 1Fh ;Receive Serial #2 In byte
 00023
 00024 INCLUDE <P16C5X.INC>
 00001 LIST
 00002 ;P16C5X.INC Standard Header File,Version 3.30 Microchip Technology,Inc.
 00224 LIST
 00025
 00000007 00026 temp EQU 07h ;Temporary holding register - PIC16C54/56
 00000010 00027 IStateS EQU 10H
 00000011 00028 IStateS2 EQU 11H
 00000012 00029 IState0_7 EQU 12H
 00000013 00030 IStateE EQU 13H
 00000014 00031 IStateL EQU 14H
 00032
 00033 ;****** ;Task 2,3 - Asynchronous 2400 Baud Serial Input (LOW=0)
0000 00034 Do_IState
0000 0220 00035 movf INDF, F ;if IState2 == 0
0001 0643 00036 btfsc STATUS,Z ; then Do Start Bit
0002 0A10 00037 goto IStateS
0003 0201 00038 movf TMR0,W ;Get current time
0004 0027 00039 movwf temp
0005 02A4 00040 incf FSR, F ;Point to First_TMR0_I(1,2)
0006 0200 00041 movf INDF,W ;Get elapsed time; Time Unit = 2 uS
0007 00A7 00042 subwf temp, F
0008 02A4 00043 incf FSR, F ;Point to nbti(1,2)
0009 0200 00044 movf INDF,W ;Past time for next input bit ?
000A 0087 00045 subwf temp,W
000B 0703 00046 btfss STATUS,0
000C 0A1E 00047 goto L1
000D 00048 L0

Please check the Microchip BBS for the latest version of the source code.
Microchip’s Worldwide Web Address: www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe®
(CompuServe membership not required).
 1997 Microchip Technology Inc. DS00585B-page 5-117

AN585
000D 0C02 00049 movlw 2 ;Point to IState(1,2)
000E 00A4 00050 subwf FSR, F
000F 0200 00051 movf INDF,W ;Get (0-B) mode #
0010 0E0F 00052 andlw H’0F’ ;Get only mode #
0011 01E2 00053 addwf PCL, F ;jump to subroutine
 00054
0012 0A10 00055 goto IStateS ;Serial Start Bit
0013 0A11 00056 goto IStateS ;1/2 of Start Bit - see if False Start
0014 0A12 00057 goto IState0_7 ;Bit 0
0015 0A12 00058 goto IState0_7 ;Bit 1
0016 0A12 00059 goto IState0_7 ;Bit 2
0017 0A12 00060 goto IState0_7 ;Bit 3
0018 0A12 00061 goto IState0_7 ;Bit 4
0019 0A12 00062 goto IState0_7 ;Bit 5
001A 0A12 00063 goto IState0_7 ;Bit 6
001B 0A12 00064 goto IState0_7 ;Bit 7
001C 0A13 00065 goto IStateE ;Serial Stop Bit
001D 0A14 00066 goto IStateL ;Last State
001E 00067 L1
001E 0064 00068 clrf FSR ;Clear the FSR register
001F 0800 00069 retlw 0
 00070
 00071 ;*****
0020 00072 Task_2 ;Task 2 - Asynchronous 2400 Baud Serial Input (LOW=0)
0020 0C18 00073 movlw IState1 ;Point to IState1
0021 0024 00074 movwf FSR
0022 0900 00075 call Do_IState
 00076 ;*****
0023 00077 Task_3 ;Task 3 - Asynchronous 2400 Baud Serial Input (LOW=0)
0023 0C1C 00078 movlw IState2 ;Point to IState2
0024 0024 00079 movwf FSR
0025 0900 00080 call Do_IState
 00081
 00082 END
MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX---------- ----------------

All other memory blocks unused.

Program Memory Words Used: 38
Program Memory Words Free: 474

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed
DS00585B-page 5-118 1997 Microchip Technology Inc.

AN585
APPENDIX C:
MPASM 01.40 Released APP_C.ASM 1-16-1997 17:09:32 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ;‘Remote Alarm’ V1.02
 00002 ; Designed by Myriad Development Co/- Jerry Farmer
 00003 ; PIC16C54, 4MHz Crystal,
 00004 ; WatchDog Timer OFF, MPASM instruction set
 00005 ;
 00006 ; Program: APP_C.ASM
 00007 ; Revision Date:
 00008 ; 1-15-97 Compatibility with MPASMWIN 1.40
 00009 ;
 00010 ;***
 00011 ;
 00012 list p=16C54,t=ON,c=132
 00013
 00014 include “P16C5X.INC”
 00001 LIST
 00002 ;P16C5X.INC Standard Header File, Ver. 3.30 Microchip Technology,Inc.
 00224 LIST
 00015
 00016 ; Constants
 00000000 00017 INDIR equ 0 ;Indirect Register
 00000033 00018 OUT_BIT_TIME equ 33h ;9600 Baud, 104uS Bit Rate
 00000064 00019 IN_BIT_TIME equ 64h ;4800 Baud, 208uS Bit Rate
 00000023 00020 FUDGE_TIME equ 23h ;Current Time within a Fudge Factor
 00021
 00022 ; B Register Definitions
 00023 #define Level_Reset PORTB, ;Low will cause Past Level to reset
 00024 ;RB.7 - RB.1 == Input from Sensors
 000000FF 00025 RB_TRIS equ B’11111111’ ;RB TRIS at INIT State == all input
 00000000 00026 RB_MASK equ B’00000000’ ;What is High/Low for RB at INIT State
 00027
 00028 ; A Register Definitions - Programmable Inputs
 00029 #define Serial_IN_1 PORTA,0 ;Serial Input #1 - 8 bits
 00030 #define LED PORTA,1 ;LED Output - Level/State Indicator
 00031 #define Serial_Out PORTA,2 ;Serial Output - 8 bits + passwords
 00032 #define Serial_IN_2 PORTA,3 ;Serial Input #2 - 8 bits
 00033
 000000F9 00034 RA_TRIS equ B’11111001’ ;RA TRIS at INIT State
 00000000 00035 RA_MASK equ B’00000000’ ;What is High/Low for RA at INIT State
 00036
 00037 ; Register Files
 00000007 00038 temp equ 07h ;Temporary holding register - PIC16C54/56
 00000008 00039 Timer_Bits equ 08h ;Indicates which Timer(s) are Active = 1
 00000009 00040 Flags equ 09h ;Error Flags
 0000000A 00041 LED_Mode equ 0Ah ;(0-2)=Mode, 3=LED_B, (4-6)=Seq #, 7=NEW
 0000000B 00042 OState equ 0Bh ;Serial Out State
 0000000C 00043 T_5_M_LO equ 0Ch ;5 Min Timer Counter - Low
 0000000D 00044 T_5_M_HI equ 0Dh ;5 Min Timer Counter - High
 0000000E 00045 T_5_S_CO equ 0Eh ;5 Second Timer - lack of Serial Input
 0000000F 00046 T_20_mS_CO equ 0Fh ;20 mS Timer - used for debouncing
 00000010 00047 LED_C equ 10h ;LED Counter
 00000011 00048 Last_TMR0 equ 11h ;Last value of the TMR0
 00000012 00049 First_TMR0_O equ 12h ;Starting time for next Output event
 00000013 00050 xmt_byte equ 13h ;Serial xmit byte - destroyed in use
 00000014 00051 cc equ 14h ;256 * TMR0 time

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).
 1997 Microchip Technology Inc. DS00585B-page 5-119

AN585
 00000015 00052 RCV_Storage equ 15h ;Long term storage of rcv_byte #1 & 2
 00000016 00053 Old_RB equ 16h ;Oldest/Master copy of RB
 00000017 00054 Last_RB equ 17h ;Last copy of RB
 00000018 00055 IState1 equ 18h ;Serial In #1 State
 00000019 00056 First_TMR0_I1 equ 19h ;Starting time for next #1 Input event
 0000001A 00057 nbti1 equ 1Ah ;Next Bit #1 In Time - variable time
 0000001B 00058 rcv_byte_1 equ 1Bh ;Receive Serial #1 In byte
 0000001C 00059 IState2 equ 1Ch ;Serial In #2 State
 0000001D 00060 First_TMR0_I2 equ 1Dh ;Starting time for next #2 Input event
 0000001E 00061 nbti2 equ 1Eh ;Next Bit #2 In Time - variable time
 0000001F 00062 rcv_byte_2 equ 1Fh ;Receive Serial #2 In byte
 00063
 00064 ; Indicates which Timer(s) are Active = 1 & Flags
 00065 #define OState_B Timer_Bits,0;Serial Out Active Bit
 00066 #define IState1_B Timer_Bits,1;Serial IN #1 Active Bit
 00067 #define IState2_B Timer_Bits,2;Serial IN #2 Active Bit
 00068 #define T_5_S_B Timer_Bits,3;5 Second Timer Active Bit
 00069 #define T_5_M_B Timer_Bits,4;5 Min Timer Active Bit
 00070 #define RCV_Got_One_B Timer_Bits,5;Got a NEW Received byte to send out
 00071 #define RB_NEW_B Timer_Bits,6;Indicates a change in RB input
 00072 #define S_5_S_B Timer_Bits,7;Serial In 5 secs of inactivity
 00073
 00074 ; Error Flags
 00075 #define FS_Flag_1 Flags,0 ;Serial #1 IN had a False Start Error
 00076 #define FE_Flag_1 Flags,1 ;Last Serial #1 IN had a Frame Error
 00077 #define FS_Flag_2 Flags,2 ;Serial #2 IN had a False Start Error
 00078 #define FE_Flag_2 Flags,3 ;Last Serial #2 IN had a Frame Error
 00079 #define RCV_Overflow Flags,4 ;Lost Serial Input Byte - too Slow
 00080 #define RB_Overflow Flags,5 ;Lost RB Input Byte - too Slow
 00081 #define S_5_S_Overflow Flags,6 ;Lost ‘5S Inactivity’ msg - too Slow
 00082
 00083 ;Equates for LED Task #7
 00084 #define LED_B LED_Mode,3 ;LED is active
 00085 #define LED_NEW_B LED_Mode,7 ;LED has just changed Modes = 1
 00000008 00086 LED_OFF_MODE equ B’00001000’ ;LED OFF
 00000089 00087 LED_SEQ1_MODE equ B’10001001’ ;LED Sequence 1: .2s On, 1s Off
 0000008A 00088 LED_SEQ2_MODE equ B’10001010’ ;LED Sequence 2: 3x(.2s), 1s Off
 0000008B 00089 LED_SEQ3_MODE equ B’10001011’ ;LED Sequence 3: 5x(.2s), 1s Off
 0000009C 00090 LED_SLOW_MODE equ B’10011100’ ;LED Slow Pulsing - .3 Hz
 0000009D 00091 LED_MEDIUM_MODE equ B’10011101’ ;LED Medium Pulsing - 1 Hz
 0000009E 00092 LED_FAST_MODE equ B’10011110’ ;LED Fast Pulsing - 3 Hz
 0000008F 00093 LED_ON_MODE equ B’10001111’ ;LED ON Continuously
 00094
 00095
 00096 ; Clear Registers 7-1Fh
0000 00097 Clear_Regs
0000 0BE9 00098 GOTO Do_Clear_Regs ;Save space in first 256 bytes
 00099
 00100 ; Determine the Highest Error Level & Start Task #7 outputing the new
0001 00101 D_H_E_L
0001 0BD2 00102 GOTO Do_D_H_E_L ;Save space in first 256 bytes
 00103 ;Level
 00104 ;****** ;Task #1 - Asynchronous 9600 Baud Serial Output (LOW=0)
0002 00105 Do_OState
0002 022B 00106 MOVF OState, F ;if OState == 0
0003 0643 00107 BTFSC STATUS,Z ;
0004 0A24 00108 GOTO OStateS ;then goto Output-Start-Bit
0005 0201 00109 MOVF TMR0,W ;Get current time
0006 0027 00110 MOVWF temp ; & store in Temporary variable
0007 0212 00111 MOVF First_TMR0_O,W ;Get elapsed time; Time Unit = 2 uS
0008 00A7 00112 SUBWF temp, F ;Delta of Current Time & Orginal Time
0009 0C23 00113 MOVLW FUDGE_TIME ;Take in account processing time to do it
000A 0087 00114 SUBWF temp,W ;Time within fudge factor ?
000B 0703 00115 BTFSS STATUS,C
000C 0A23 00116 GOTO _0005 ;Not time yet to change States so return
000D 0C33 00117 _0003 MOVLW OUT_BIT_TIME ;Past time for next out-bit ?
DS00585B-page 5-120 1997 Microchip Technology Inc.

AN585
000E 0087 00118 SUBWF temp,W
000F 0603 00119 BTFSC STATUS,C ;Do some delaying until it is time
0010 0A15 00120 GOTO _0004 ;It is now time to out put a bit
0011 0C04 00121 MOVLW H’04’ ;Account for loop delay
0012 01E7 00122 ADDWF temp, F
0013 0000 00123 NOP ; make loop delay even
0014 0A0D 00124 GOTO _0003 ;Wait for exact time to output bit
0015 020B 00125 _0004 MOVF OState,W ;Get (0-A) mode #
0016 0E0F 00126 ANDLW H’0F’ ;Get only mode #
0017 01E2 00127 ADDWF PCL, F ;jump to subroutine
0018 0A24 00128 GOTO OStateS ;Serial Start Bit
0019 0A2B 00129 GOTO OState0_7 ;Bit 0
001A 0A2B 00130 GOTO OState0_7 ;Bit 1
001B 0A2B 00131 GOTO OState0_7 ;Bit 2
001C 0A2B 00132 GOTO OState0_7 ;Bit 3
001D 0A2B 00133 GOTO OState0_7 ;Bit 4
001E 0A2B 00134 GOTO OState0_7 ;Bit 5
001F 0A2B 00135 GOTO OState0_7 ;Bit 6
0020 0A2B 00136 GOTO OState0_7 ;Bit 7
0021 0A31 00137 GOTO OStateE ;Serial Stop Bit
0022 0A36 00138 GOTO OStateL ;Last State
0023 0800 00139 _0005 RETLW H’00’
 00140
0024 00141 OStateS
0024 0545 00142 BSF Serial_Out ;Serial Start Bit
0025 0201 00143 MOVF TMR0,W ;Store starting time
0026 0032 00144 MOVWF First_TMR0_O
0027 0C0D 00145 MOVLW H’0D’ ;Fudge again
0028 00B2 00146 SUBWF First_TMR0_O, F
0029 02AB 00147 INCF OState, F ;increment to next state
002A 0800 00148 RETLW H’00’
 00149
002B 00150 OState0_7 ;Bit 0 - 7
002B 0333 00151 RRF xmt_byte, F ;Move bit into C from right most bit
002C 0703 00152 BTFSS STATUS,C ;
002D 0445 00153 BCF Serial_Out ;
002E 0603 00154 BTFSC STATUS,C ;
002F 0545 00155 BSF Serial_Out ;
0030 0A32 00156 GOTO OS_End
0031 00157 OStateE
0031 0445 00158 BCF Serial_Out ;Serial Stop Bit
0032 0C33 00159 OS_End MOVLW OUT_BIT_TIME ;Adjust out the cumulation of error
0033 01F2 00160 ADDWF First_TMR0_O, F
0034 02AB 00161 INCF OState, F ;increment to next state
0035 0800 00162 RETLW H’00’
0036 00163 OStateL
0036 006B 00164 CLRF OState ;Ready to send next byte out
0037 0408 00165 BCF OState_B ;Serial Out not active
0038 0800 00166 RETLW H’00’
 00167
 00168 ;****** ;Task #7 - Output Highest Level Indication on LED
0039 00169 Do_LED
0039 06EA 00170 BTFSC LED_NEW_B ;Initialize regs if change in modes
003A 0A4C 00171 GOTO LED_NEW
003B 02B0 00172 INCF LED_C, F ;Inc Counter - Time Unit = 131072 uS
003C 020A 00173 MOVF LED_Mode,W ;Get (0-7) mode #
003D 0E07 00174 ANDLW H’07’ ;Get only mode #
003E 01E2 00175 ADDWF PCL, F ;jump to subroutine
003F 0A48 00176 GOTO LED_OFF ;LED OFF
0040 0A64 00177 GOTO LED_SEQ1 ;LED Seq 1: 1 short pulse & pause
0041 0A67 00178 GOTO LED_SEQ2 ;LED Seq 2: 2 short pulses & pause
0042 0A8A 00179 GOTO LED_SEQ3 ;LED Seq 3: 3 short pulses & pause
0043 0A50 00180 GOTO LED_SLOW ;LED Slow Pulsing - .3 Hz
0044 0A5E 00181 GOTO LED_MEDIUM ;LED Medium Pulsing - 1 Hz
0045 0A61 00182 GOTO LED_FAST ;LED Fast Pulsing - 3 Hz
0046 0A4D 00183 GOTO LED_ON ;LED ON Continuously
 1997 Microchip Technology Inc. DS00585B-page 5-121

AN585
0047 0800 00184 _0012 RETLW H’00’
 00185 ;------
0048 00186 LED_OFF
0048 0425 00187 BCF LED ;Turn off LED
0049 046A 00188 BCF LED_B ;LED must be off
004A 0070 00189 CLRF LED_C ;Reset Counter - LED_C = 0
004B 0800 00190 RETLW H’00’
 00191 ;------
004C 00192 LED_NEW
004C 04EA 00193 BCF LED_NEW_B ;Done initializing
004D 00194 LED_ON
004D 0525 00195 BSF LED ;Turn on LED
004E 0070 00196 CLRF LED_C ;Reset Counter - LED_C = 0
004F 0800 00197 RETLW H’00’
 00198 ;------
0050 00199 LED_SLOW
0050 0C0C 00200 MOVLW H’0C’ ;.3Hz @ 50% Duty
0051 0027 00201 MOVWF temp
0052 0207 00202 LED_S MOVF temp,W ;Check LED_C if time, .3Hz @ 50% Duty
0053 0090 00203 SUBWF LED_C,W
0054 0743 00204 BTFSS STATUS,Z
0055 0A47 00205 GOTO _0012
0056 0C10 00206 MOVLW H’10’
0057 01AA 00207 XORWF LED_Mode, F ;Switch states
0058 078A 00208 BTFSS LED_Mode,4 ;Now make LED same state
0059 0425 00209 BCF LED
005A 068A 00210 BTFSC LED_Mode,4
005B 0525 00211 BSF LED
005C 0070 00212 CLRF LED_C ;Reset LED_C
005D 0800 00213 RETLW H’00’
 00214 ;------
005E 00215 LED_MEDIUM
005E 0C04 00216 MOVLW H’04’ ;1Hz @ 50% Duty
005F 0027 00217 MOVWF temp
0060 0A52 00218 GOTO LED_S ;Go do it
 00219 ;------
0061 00220 LED_FAST
0061 0C01 00221 MOVLW H’01’ ;3Hz @ 50% Duty
0062 0027 00222 MOVWF temp
0063 0A52 00223 GOTO LED_S ;Go do it
 00224 ;------
0064 00225 LED_SEQ1 ;.2 ON, 1 OFF
0064 078A 00226 BTFSS LED_Mode,4 ;Skip if bit is high
0065 0A76 00227 GOTO ON1 ;Go do it
0066 0A82 00228 GOTO OFF3 ;Go do it
 00229 ;------
0067 00230 LED_SEQ2 ;.2 ON, .2 OFF, .2 ON, 1 OFF
0067 020A 00231 MOVF LED_Mode,W
0068 0027 00232 MOVWF temp
0069 0C30 00233 MOVLW H’30’ ;Get sequence # only
006A 0167 00234 ANDWF temp, F
006B 03A7 00235 SWAPF temp, F ;swap nibbles
006C 0207 00236 MOVF temp,W ;get nibble for offset
006D 01E2 00237 ADDWF PCL, F ;Table jump calculation
006E 0A76 00238 GOTO ON1 ;LED is on, check if time to change
006F 0A7C 00239 GOTO OFF2 ;LED is off, check if time to change
0070 0A76 00240 GOTO ON1 ;LED is on, check if time to change
0071 0A82 00241 GOTO OFF3 ;LED is off, check if time to change
 00242 ;------
0072 00243 LED_Exit
0072 0C10 00244 MOVLW H’10’ ;Inc Seq #
0073 01EA 00245 ADDWF LED_Mode, F
0074 0070 00246 CLRF LED_C ;Reset LED_C
0075 0800 00247 RETLW H’00’
0076 00248 ON1
0076 0C02 00249 MOVLW H’02’ ;Check LED_C if time, .2 sec-on
DS00585B-page 5-122 1997 Microchip Technology Inc.

AN585
0077 0090 00250 SUBWF LED_C,W
0078 0743 00251 BTFSS STATUS,Z
0079 0A47 00252 GOTO _0012
007A 0425 00253 BCF LED ;Turn off LED
007B 0A72 00254 GOTO LED_Exit
007C 00255 OFF2
007C 0C02 00256 MOVLW H’02’ ;Check LED_C if time, .2 sec-on
007D 0090 00257 SUBWF LED_C,W
007E 0743 00258 BTFSS STATUS,Z
007F 0A47 00259 GOTO _0012
0080 0525 00260 BSF LED ;Turn on LED
0081 0A72 00261 GOTO LED_Exit
0082 00262 OFF3
0082 0C08 00263 MOVLW H’08’ ;Check LED_C if time, 1 sec-off
0083 0090 00264 SUBWF LED_C,W
0084 0743 00265 BTFSS STATUS,Z
0085 0A47 00266 GOTO _0012
0086 0525 00267 BSF LED ;Turn on LED
0087 0CF0 00268 MOVLW H’F0’
0088 012A 00269 IORWF LED_Mode, F ;Cause (Seq# & NEW) to overflow to 0
0089 0A72 00270 GOTO LED_Exit
008A 00271 LED_SEQ3 ;.2 ON, .2 OFF, .2 ON, .2 OFF, .2 ON, 1 OFF
008A 020A 00272 MOVF LED_Mode,W ;Get LED info
008B 0027 00273 MOVWF temp
008C 0C70 00274 MOVLW H’70’ ;Get sequence # only
008D 0167 00275 ANDWF temp, F
008E 03A7 00276 SWAPF temp, F ;swap nibbles
008F 0207 00277 MOVF temp,W ;get nibble for offset
0090 01E2 00278 ADDWF PCL, F ;Table jump calculation
0091 0A76 00279 GOTO ON1 ;LED is on check if time to change
0092 0A7C 00280 GOTO OFF2 ;LED is off check if time to change
0093 0A76 00281 GOTO ON1 ;LED is on check if time to change
0094 0A7C 00282 GOTO OFF2 ;LED is off check if time to change
0095 0A76 00283 GOTO ON1 ;LED is on check if time to change
0096 0A82 00284 GOTO OFF3 ;LED is off check if time to change
 00285
 00286 ;**** Quick Check of Tasks #1, #2 and #3
0097 00287 QCheck_T123
 00288 ;Task #1 - Asynchronous 9600 Baud Serial Output (LOW=0)
0097 0708 00289 BTFSS OState_B ;if not outputing now then skip call
0098 0A9A 00290 GOTO T2
0099 0902 00291 CALL Do_OState ;Go Do Task #1
 00292
 00293 ;Task #2 - Asynchronous 4800 Baud Serial Input (LOW=0)
009A 0628 00294 T2 BTFSC IState1_B ;if already started then call
009B 0A9F 00295 GOTO _0029
009C 0605 00296 BTFSC Serial_IN_1 ;if Start bit ? then call
009D 0A9F 00297 GOTO _0029
009E 0AA0 00298 GOTO T3
009F 09A7 00299 _0029 CALL Do_I1State ;Go Do Task #2
 00300
 00301 ;Task #3 - Asynchronous 4800 Baud Serial Input (LOW=0)
00A0 0648 00302 T3 BTFSC IState2_B ;if already started then call
00A1 0AA5 00303 GOTO _0031
00A2 0665 00304 BTFSC Serial_IN_2 ;if Start bit ? then call
00A3 0AA5 00305 GOTO _0031
00A4 0800 00306 RETLW H’00’
00A5 09C2 00307 _0031 CALL Do_I2State ;Go Do Task #3
00A6 0800 00308 RETLW H’00’
 00309
 00310 ;****** ;Task #2 - Asynchronous 4800 Baud Serial Input (LOW=0)
00A7 00311 Do_I1State
00A7 0238 00312 MOVF IState1, F ;if IState1 == 0
00A8 0643 00313 BTFSC STATUS,Z ; then Do Start Bit
00A9 0ADD 00314 GOTO I1StateS
00AA 0201 00315 MOVF TMR0,W ;Get current time
 1997 Microchip Technology Inc. DS00585B-page 5-123

AN585
00AB 0027 00316 MOVWF temp
00AC 0219 00317 MOVF First_TMR0_I1,W ;Get elapsed time; Time Unit = 2 uS
00AD 00A7 00318 SUBWF temp, F
00AE 021A 00319 MOVF nbti1,W ;Past time for next input bit ?
00AF 0087 00320 SUBWF temp,W
00B0 0703 00321 BTFSS STATUS,C
00B1 0AC1 00322 GOTO _0033
00B2 0218 00323 MOVF IState1,W ;Get (0-B) mode #
00B3 0E0F 00324 ANDLW H’0F’ ;Get only mode #
00B4 01E2 00325 ADDWF PCL, F ;jump to subroutine
00B5 0ADD 00326 GOTO I1StateS ;Serial Start Bit
00B6 0AE6 00327 GOTO I1State2 ;1/2 of Start Bit - see if False Start
00B7 0AEF 00328 GOTO I1State0_7 ;Bit 0
00B8 0AEF 00329 GOTO I1State0_7 ;Bit 1
00B9 0AEF 00330 GOTO I1State0_7 ;Bit 2
00BA 0AEF 00331 GOTO I1State0_7 ;Bit 3
00BB 0AEF 00332 GOTO I1State0_7 ;Bit 4
00BC 0AEF 00333 GOTO I1State0_7 ;Bit 5
00BD 0AEF 00334 GOTO I1State0_7 ;Bit 6
00BE 0AEF 00335 GOTO I1State0_7 ;Bit 7
00BF 0AF8 00336 GOTO I1StateE ;Serial Stop Bit
00C0 0B03 00337 GOTO I1StateL ;Last State - End of Stop Bit
00C1 00338 _0033
00C1 0800 00339 RETLW H’00’
 00340
 00341 ;****** ;Task #3 - Asynchronous 4800 Baud Serial Input (LOW=0)
00C2 00342 Do_I2State
00C2 023C 00343 MOVF IState2, F ;if IState1 == 0
00C3 0643 00344 BTFSC STATUS,Z ;then Do Start Bit
00C4 0B10 00345 GOTO I2StateS
00C5 0201 00346 MOVF TMR0,W ;Get current time
00C6 0027 00347 MOVWF temp
00C7 021D 00348 MOVF First_TMR0_I2,W ;Get elapsed time; Time Unit = 2 uS
00C8 00A7 00349 SUBWF temp, F
00C9 021E 00350 MOVF nbti2,W ;Past time for next input bit ?
00CA 0087 00351 SUBWF temp,W
00CB 0703 00352 BTFSS STATUS,C
00CC 0ADC 00353 GOTO _0035
00CD 021C 00354 MOVF IState2,W ;Get (0-B) mode #
00CE 0E0F 00355 ANDLW H’0F’ ;Get only mode #
00CF 01E2 00356 ADDWF PCL, F ;jump to subroutine
00D0 0B10 00357 GOTO I2StateS ;Serial Start Bit
00D1 0B19 00358 GOTO I2StateS2 ;1/2 of Start Bit - see if False Start
00D2 0B22 00359 GOTO I2State0_7 ;Bit 0
00D3 0B22 00360 GOTO I2State0_7 ;Bit 1
00D4 0B22 00361 GOTO I2State0_7 ;Bit 2
00D5 0B22 00362 GOTO I2State0_7 ;Bit 3
00D6 0B22 00363 GOTO I2State0_7 ;Bit 4
00D7 0B22 00364 GOTO I2State0_7 ;Bit 5
00D8 0B22 00365 GOTO I2State0_7 ;Bit 6
00D9 0B22 00366 GOTO I2State0_7 ;Bit 7
00DA 0B2B 00367 GOTO I2StateE ;Serial Stop Bit
00DB 0B36 00368 GOTO I2StateL ;Last State - End of Stop Bit
00DC 0800 00369 _0035 RETLW H’00’
 00370
 00371 ;*** ;Subroutines for Task #2
00DD 00372 I1StateS ;Start Bit - Setup timing variables
00DD 0528 00373 BSF IState1_B ;Serial Input Active
00DE 0201 00374 MOVF TMR0,W ;Store starting time
00DF 0039 00375 MOVWF First_TMR0_I1
00E0 0C0D 00376 MOVLW H’0D’ ;Fudge again
00E1 00B9 00377 SUBWF First_TMR0_I1, F
00E2 0C32 00378 MOVLW H’32’ ;Time delay = 1/2 bit time
00E3 003A 00379 MOVWF nbti1
00E4 02B8 00380 INCF IState1, F ;Increment to next state
00E5 0800 00381 RETLW H’00’
DS00585B-page 5-124 1997 Microchip Technology Inc.

AN585
00E6 00382 I1State2 ;Check if still a Start Bit
00E6 0705 00383 BTFSS Serial_IN_1 ;False Start Error ?
00E7 0B06 00384 GOTO FS_Error_1
00E8 0409 00385 BCF FS_Flag_1 ;Start Bit OK
00E9 021A 00386 MOVF nbti1,W ;Adjust out the error
00EA 01F9 00387 ADDWF First_TMR0_I1, F
00EB 0C64 00388 MOVLW IN_BIT_TIME ;Time Delay = full bit time
00EC 003A 00389 MOVWF nbti1
00ED 02B8 00390 INCF IState1, F ;increment to next state
00EE 0800 00391 RETLW H’00’
00EF 00392 I1State0_7 ;Bit 0 - 7
00EF 0705 00393 BTFSS Serial_IN_1 ;Move Input bit into C
00F0 0403 00394 BCF STATUS,C
00F1 0605 00395 BTFSC Serial_IN_1
00F2 0503 00396 BSF STATUS,C
00F3 033B 00397 RRF rcv_byte_1, F ;Move C into left most bit
00F4 021A 00398 MOVF nbti1,W
00F5 01F9 00399 ADDWF First_TMR0_I1, F ;Adjust out the error
00F6 02B8 00400 INCF IState1, F ;increment to next state
00F7 0800 00401 RETLW H’00’
00F8 00402 I1StateE ;Check if we have a proper Stop Bit
00F8 0605 00403 BTFSC Serial_IN_1 ;Frame Error
00F9 0B09 00404 GOTO F_Error_1
00FA 0429 00405 BCF FE_Flag_1 ;Stop Bit OK
00FB 006E 00406 CLRF T_5_S_CO ;Reset 5 Sec Timer - got a good byte
 00407 ;Process the msg Here !
00FC 021B 00408 MOVF rcv_byte_1,W ;Make a copy of just received byte
00FD 0035 00409 MOVWF RCV_Storage
00FE 07A8 00410 BTFSS RCV_Got_One_B ;Report Lost data
00FF 0489 00411 BCF RCV_Overflow
0100 06A8 00412 BTFSC RCV_Got_One_B
0101 0589 00413 BSF RCV_Overflow
0102 05A8 00414 BSF RCV_Got_One_B ;We Now have a RB Value to go out
0103 00415 I1StateL
0103 0078 00416 CLRF IState1 ;Ready to receive next byte
0104 0428 00417 BCF IState1_B ;Serial In not currently active
0105 0800 00418 RETLW H’00’
0106 00419 FS_Error_1 ;False Start - Shut Down Checking
0106 0428 00420 BCF IState1_B ;Serial Input NOT Active
0107 0509 00421 BSF FS_Flag_1 ;False Start Error
0108 0B03 00422 GOTO I1StateL ;Start All Over
0109 00423 F_Error_1 ;Frame Error - Wait for End of Stop Bit
0109 021A 00424 MOVF nbti1,W ;Adjust out the error
010A 01F9 00425 ADDWF First_TMR0_I1, F
010B 0C32 00426 MOVLW H’32’ ;Time Delay = 1/2 bit time
010C 003A 00427 MOVWF nbti1
010D 0529 00428 BSF FE_Flag_1 ;Frame Error for this Byte ?
010E 02B8 00429 INCF IState1, F ;Increment to next state
010F 0800 00430 RETLW H’00’
 00431
 00432 ;*** ;Subroutines for Task #3
0110 00433 I2StateS ;Start Bit - Setup timing variables
0110 0548 00434 BSF IState2_B ;Serial Input Active
0111 0201 00435 MOVF TMR0,W ;Store starting time
0112 003D 00436 MOVWF First_TMR0_I2
0113 0C0D 00437 MOVLW H’0D’ ;Fudge again
0114 00BD 00438 SUBWF First_TMR0_I2, F
0115 0C32 00439 MOVLW H’32’ ;Time delay = 1/2 bit time
0116 003E 00440 MOVWF nbti2
0117 02BC 00441 INCF IState2, F ;Increment to next state
0118 0800 00442 RETLW H’00’
0119 00443 I2StateS2 ;Check if still a Start Bit
0119 0765 00444 BTFSS Serial_IN_2 ;False Start Error ?
011A 0B39 00445 GOTO FS_Error_2
011B 0449 00446 BCF FS_Flag_2 ;Start Bit OK
011C 021E 00447 MOVF nbti2,W ;Adjust out the error
 1997 Microchip Technology Inc. DS00585B-page 5-125

AN585
011D 01FD 00448 ADDWF First_TMR0_I2, F
011E 0C64 00449 MOVLW IN_BIT_TIME ;Time Delay = full bit time
011F 003E 00450 MOVWF nbti2
0120 02BC 00451 INCF IState2, F ;increment to next state
0121 0800 00452 RETLW H’00’
0122 00453 I2State0_7 ;Bit 0 - 7
0122 0765 00454 BTFSS Serial_IN_2 ;Move Input bit into C
0123 0403 00455 BCF STATUS,C
0124 0665 00456 BTFSC Serial_IN_2
0125 0503 00457 BSF STATUS,C
0126 033F 00458 RRF rcv_byte_2, F ;Move C into left most bit
0127 021E 00459 MOVF nbti2,W
0128 01FD 00460 ADDWF First_TMR0_I2, F ;Adjust out the error
0129 02BC 00461 INCF IState2, F ;increment to next state
012A 0800 00462 RETLW H’00’
012B 00463 I2StateE ;Check if we have a proper Stop Bit
012B 0665 00464 BTFSC Serial_IN_2 ;Frame Error
012C 0B3C 00465 GOTO F_Error_2
012D 0469 00466 BCF FE_Flag_2 ;Stop Bit OK
012E 006E 00467 CLRF T_5_S_CO ;Reset 5 Sec Timer - got a good byte
 00468 ;Process the msg Here !
012F 021F 00469 MOVF rcv_byte_2,W ;Make a copy of just received byte
0130 0035 00470 MOVWF RCV_Storage
0131 07A8 00471 BTFSS RCV_Got_One_B ;Report Lost data
0132 0489 00472 BCF RCV_Overflow
0133 06A8 00473 BTFSC RCV_Got_One_B
0134 0589 00474 BSF RCV_Overflow
0135 05A8 00475 BSF RCV_Got_One_B ;We Now have a RB Value to go out
0136 00476 I2StateL
0136 007C 00477 CLRF IState2 ;Ready to receive next byte
0137 0448 00478 BCF IState2_B ;Serial In not currently active
0138 0800 00479 RETLW H’00’
0139 00480 FS_Error_2
0139 0448 00481 BCF IState2_B ;False Start - Shut Down Checking
013A 0549 00482 BSF FS_Flag_2 ;False Start Error
013B 0B36 00483 GOTO I2StateL ;Start All Over
013C 00484 F_Error_2 ;Frame Error - Wait for End of Stop Bit
013C 021E 00485 MOVF nbti2,W ;Adjust out the error
013D 01FD 00486 ADDWF First_TMR0_I2, F
013E 0C32 00487 MOVLW H’32’ ;Time Delay = 1/2 bit time
013F 003E 00488 MOVWF nbti2
0140 0569 00489 BSF FE_Flag_2 ;Frame Error for this Byte ?
0141 02BC 00490 INCF IState2, F ;Increment to next state
0142 0800 00491 RETLW H’00’
 00492
 00493 ;****** ;Code Starting point
0143 00494 Main
0143 0C00 00495 MOVLW H’00’ ;What is High/Low for RA at INIT State
0144 0025 00496 MOVWF PORTA
0145 0C00 00497 MOVLW H’00’ ;What is High/Low for RB at INIT State
0146 0026 00498 MOVWF PORTB
0147 0CF9 00499 MOVLW H’F9’ ;RA TRIS at INIT State
0148 0005 00500 TRIS 5
0149 0CFF 00501 MOVLW H’FF’ ;RB TRIS at INIT State
014A 0006 00502 TRIS 6
014B 0C00 00503 MOVLW H’00’ ;TMR0/2
014C 0002 00504 OPTION
014D 0900 00505 CALL Clear_Regs ;Clear Registers 7-1F - Same Memory Page
014E 0061 00506 CLRF TMR0 ;Start timers
 00507
 00508 ;Initialize Tasks
 00509 ;Task #1 waits for byte to output
 00510 ;Task #2 waits for Serial IN Start Bit
 00511 ;Task #3 waits for Serial IN Start Bit
 00512 ;Task #4 runs when Task 1 is Not
 00513 ;Task #5 is always running
DS00585B-page 5-126 1997 Microchip Technology Inc.

AN585
014F 0206 00514 MOVF PORTB,W ;Task #6 is Initialized here
0150 0036 00515 MOVWF Old_RB
0151 0216 00516 MOVF Old_RB,W ;Make all the same initial value
0152 0037 00517 MOVWF Last_RB
0153 05C8 00518 BSF RB_NEW_B ;Tell Task #4: RB byte ready to output
0154 0C08 00519 MOVLW LED_OFF_MODE
0155 002A 00520 MOVWF LED_Mode ;Task #7 is Started
0156 0568 00521 BSF T_5_S_B ;Task #8 is Started here
0157 0588 00522 BSF T_5_M_B ;Task #9 is Started here
 00523
 00524 ; Handle Task & Timer activities - Main Loop
0158 00525 Task_1 ;Task #1 - Asynchronous 9600 Baud Serial Output (LOW=0)
0158 0708 00526 BTFSS OState_B ;if not outputing now then skip call
0159 0B5B 00527 GOTO Task_2
015A 0902 00528 CALL Do_OState ;Go Do Task #1
 00529
015B 00530 Task_2 ;Task #2 - Asynchronous 4800 Baud Serial Input (LOW=0)
015B 0628 00531 BTFSC IState1_B ;if already started then call
015C 0B60 00532 GOTO _0053
015D 0605 00533 BTFSC Serial_IN_1 ;if Start bit ? then call
015E 0B60 00534 GOTO _0053
015F 0B61 00535 GOTO Task_3
0160 09A7 00536 _0053 CALL Do_I1State ;Go Do Task #2
 00537
0161 00538 Task_3 ;Task #3 - Asynchronous 4800 Baud Serial Input (LOW=0)
0161 0648 00539 BTFSC IState2_B ;if already started then call
0162 0B66 00540 GOTO _0055
0163 0665 00541 BTFSC Serial_IN_2 ;if Start bit ? then call
0164 0B66 00542 GOTO _0055
0165 0B67 00543 GOTO Task_4
0166 09C2 00544 _0055 CALL Do_I2State ;Go Do Task #3
 00545
0167 00546 Task_4 ;Task #4 - Finds next Buffered Byte to Send Out through Task 1
0167 0608 00547 BTFSC OState_B ;if outputing now then skip call
0168 0B7D 00548 GOTO _0059
0169 07A8 00549 BTFSS RCV_Got_One_B ;Got a NEW Received byte to send
016A 0B70 00550 GOTO _0057
016B 0215 00551 MOVF RCV_Storage,W ;Send just received byte
016C 0033 00552 MOVWF xmt_byte
016D 04A8 00553 BCF RCV_Got_One_B ;Clear need to send old byte
016E 0508 00554 BSF OState_B ;Start Task #1 & Lock Out Others
016F 0B7D 00555 GOTO _0059
0170 07C8 00556 _0057 BTFSS RB_NEW_B ;Indicates a change in RB input
0171 0B77 00557 GOTO _0058
0172 0216 00558 MOVF Old_RB,W ;Send New RB value
0173 0033 00559 MOVWF xmt_byte
0174 04C8 00560 BCF RB_NEW_B ;Clear need to send out newest value
0175 0508 00561 BSF OState_B ;Start Task #1 & Lock Out Others
0176 0B7D 00562 GOTO _0059
0177 07E8 00563 _0058 BTFSS S_5_S_B ;Serial In 5 secs of inactivity
0178 0B7D 00564 GOTO _0059
0179 0CFF 00565 MOVLW H’FF’ ;Tell of inactivity of Serial In
017A 0033 00566 MOVWF xmt_byte
017B 04E8 00567 BCF S_5_S_B ;Clear need to send msg
017C 0508 00568 BSF OState_B ;Start Task #1 & Lock Out Others
 00569
 00570 ;Heart Beat - Time unit = 512 uS for Tasks #5 & #6
017D 0201 00571 _0059 MOVF TMR0,W ;Step-up time units * 512
017E 0027 00572 MOVWF temp
017F 0211 00573 MOVF Last_TMR0,W ;Test to see if it overflowed
0180 0087 00574 SUBWF temp,W
0181 0703 00575 BTFSS STATUS,C
0182 0B86 00576 GOTO Inc_Time
0183 0207 00577 MOVF temp,W ;unit error = < |+-512 uS|
0184 0031 00578 MOVWF Last_TMR0
0185 0B58 00579 GOTO Task_1
 1997 Microchip Technology Inc. DS00585B-page 5-127

AN585
0186 00580 Inc_Time
0186 0207 00581 MOVF temp,W ;Save current TMR0 into Last_TMR0
0187 0031 00582 MOVWF Last_TMR0
 00583
0188 00584 Task_5 ;Task #5 - Monitor Level Reset Input Line - Always Running !
0188 0606 00585 BTFSC Level_Reset
0189 0B8C 00586 GOTO Task_6
018A 0C08 00587 MOVLW LED_OFF_MODE ;Lowest Level Indicator output
018B 002A 00588 MOVWF LED_Mode
 00589
018C 00590 Task_6 ;Task #6 - Debounce 8 bit Input Sensors - Runs every 20 mS
018C 02AF 00591 INCF T_20_mS_CO, F ;Inc Counter - Time Unit = 512 uS
018D 0C27 00592 MOVLW H’27’ ;Used to debounce the input
018E 008F 00593 SUBWF T_20_mS_CO,W
018F 0743 00594 BTFSS STATUS,Z
0190 0BA7 00595 GOTO _0065
0191 006F 00596 CLRF T_20_mS_CO ;Reset T_20_mS_CO to start over again
 00597
0192 0997 00598 CALL QCheck_T123 ;Quick Check of Tasks #1, #2 and #3
 00599
0193 0206 00600 MOVF PORTB,W ;Last copy of RB same as Current ?
0194 0097 00601 SUBWF Last_RB,W
0195 0643 00602 BTFSC STATUS,Z
0196 0B9A 00603 GOTO _0062
0197 0206 00604 MOVF PORTB,W ;Store Current RB - diff from Last
0198 0037 00605 MOVWF Last_RB
0199 0B9C 00606 GOTO _0063
019A 0217 00607 _0062 MOVF Last_RB,W ;New Old RB <- same value over 20 mS
019B 0036 00608 MOVWF Old_RB
019C 0236 00609 _0063 MOVF Old_RB, F ;See if RB is now 0
019D 0643 00610 BTFSC STATUS,Z ;RB == 0 ? then keep timer running
019E 0BA1 00611 GOTO _0064
019F 006C 00612 CLRF T_5_M_LO ;Reset 5 Min Timer
01A0 006D 00613 CLRF T_5_M_HI ; still not zero yet
01A1 0901 00614 _0064 CALL D_H_E_L ;Determine the Highest Error Level
01A2 07C8 00615 BTFSS RB_NEW_B ;Check for Lost Data Error
01A3 04A9 00616 BCF RB_Overflow
01A4 06C8 00617 BTFSC RB_NEW_B
01A5 05A9 00618 BSF RB_Overflow
01A6 05C8 00619 BSF RB_NEW_B ;Every 20 mS send Old_RB out
 00620
 00621 ;Heart Beat - Time unit = 131072 uS for Tasks #7, #8 & #9
01A7 0CF9 00622 _0065 MOVLW H’F9’ ;RA TRIS - refresh
01A8 0005 00623 TRIS 5
01A9 0CFF 00624 MOVLW H’FF’ ;RB TRIS - refresh
01AA 0006 00625 TRIS 6
01AB 02F4 00626 DECFSZ cc, F ;Step-up time units * 256
01AC 0B58 00627 GOTO Task_1
 00628
01AD 00629 Task_7 ;Task 7 - Output Highest Level Indication on LED
01AD 076A 00630 BTFSS LED_B ;Is LED active ?
01AE 0BB1 00631 GOTO Task_8
 00632
01AF 0997 00633 CALL QCheck_T123 ;Quick Check of Tasks #1, #2 and #3
 00634
01B0 0939 00635 CALL Do_LED ;Handle LED timing
 00636
01B1 00637 Task_8 ;Task #8 - 5 Second Serial Input Lack of Activity Timer
01B1 0768 00638 BTFSS T_5_S_B ;5 Sec Timer Active ?
01B2 0BC0 00639 GOTO Task_9
01B3 02AE 00640 INCF T_5_S_CO, F ;Inc Counter - Time Unit = 131072 uS
01B4 0C26 00641 MOVLW H’26’ ;Check T_5_S_CO if time
01B5 008E 00642 SUBWF T_5_S_CO,W
01B6 0743 00643 BTFSS STATUS,Z
01B7 0BC0 00644 GOTO Task_9
01B8 006E 00645 CLRF T_5_S_CO ;Reset T_5_S_CO
DS00585B-page 5-128 1997 Microchip Technology Inc.

AN585
01B9 0C8F 00646 MOVLW LED_ON_MODE ;Highest Level Indicator output
01BA 002A 00647 MOVWF LED_Mode
01BB 07E8 00648 BTFSS S_5_S_B ;Check if Lost Data Error
01BC 04C9 00649 BCF S_5_S_Overflow
01BD 06E8 00650 BTFSC S_5_S_B
01BE 05C9 00651 BSF S_5_S_Overflow
01BF 05E8 00652 BSF S_5_S_B ;Send notice of 5 seconds of inaction
 00653
01C0 00654 Task_9 ;Task #9 - 5 Min. Lack of Severe Error from Sensors Reset Timer
01C0 0788 00655 BTFSS T_5_M_B ;5 Min Timer Active ?
01C1 0BD1 00656 GOTO Task_A
01C2 02AC 00657 INCF T_5_M_LO, F ;Inc LO Counter; Time Unit = 131072 uS
01C3 0643 00658 BTFSC STATUS,Z ;See if carry needs to be passed on ?
01C4 02AD 00659 INCF T_5_M_HI, F ;Inc HI Counter; Time Unit = 131072 uS
01C5 0C08 00660 MOVLW H’08’ ;#2288< Check T_5_M_HI if time
01C6 008D 00661 SUBWF T_5_M_HI,W
01C7 0743 00662 BTFSS STATUS,Z
01C8 0BD1 00663 GOTO Task_A
01C9 0CF0 00664 MOVLW H’F0’ ;#2288> Check T_5_M_LO if time
01CA 008C 00665 SUBWF T_5_M_LO,W
01CB 0743 00666 BTFSS STATUS,Z
01CC 0BD1 00667 GOTO Task_A
01CD 006C 00668 CLRF T_5_M_LO ;Reset T_5_M_LO
01CE 006D 00669 CLRF T_5_M_HI ;Reset T_5_M_HI
01CF 0C08 00670 MOVLW LED_OFF_MODE ;Lowest Level Indicator output
01D0 002A 00671 MOVWF LED_Mode
01D1 00672 Task_A
01D1 0B58 00673 GOTO Task_1 ;Loop Forever
 00674
 00675 ;****
01D2 00676 Do_D_H_E_L ; Determine the Highest Error Level & Start Task #7
01D2 0C07 00677 MOVLW H’07’ ;Check top 7 bits
01D3 0027 00678 MOVWF temp
01D4 0216 00679 MOVF Old_RB,W ;Get copy of 7 debounced Sensor Input
01D5 0037 00680 MOVWF Last_RB
01D6 0377 00681 _0070 RLF Last_RB, F ;Put top bit into C bit
01D7 0603 00682 BTFSC STATUS,C ;Check if C bit is set
01D8 0BDE 00683 GOTO _0072
01D9 02E7 00684 DECFSZ temp, F ;Continue to check lesser bits
01DA 0BD6 00685 GOTO _0070
01DB 0206 00686 _0071 MOVF PORTB,W ;Restore current value of RB
01DC 0037 00687 MOVWF Last_RB
01DD 0800 00688 RETLW H’00’
01DE 020A 00689 _0072 MOVF LED_Mode,W ;Get current Level Indicator
01DF 0E07 00690 ANDLW H’07’ ;Get only “ “
01E0 0037 00691 MOVWF Last_RB ;Store into a temporary register
01E1 0207 00692 MOVF temp,W ;Check if already at this Level
01E2 0097 00693 SUBWF Last_RB,W
01E3 0603 00694 BTFSC STATUS,C
01E4 0BDB 00695 GOTO _0071
01E5 0C88 00696 MOVLW H’88’ ;Start to build LED_Mode
01E6 0107 00697 IORWF temp,W ;Put new Level Indicator into reg
01E7 002A 00698 MOVWF LED_Mode ;Store new LED Mode
01E8 0BDB 00699 GOTO _0071
 00700
01E9 00701 Do_Clear_Regs ; Clear Registers 7-1Fh
01E9 0C1F 00702 MOVLW H’1F’ ;First regs to clear
01EA 0024 00703 MOVWF FSR
01EB 0060 00704 Loop_C CLRF INDIR ;Clear reg
01EC 00E4 00705 DECF FSR, F ;point to next reg to clear
01ED 0CE7 00706 MOVLW H’E7’ ;Dec temp, jump if not done
01EE 0084 00707 SUBWF FSR,W
01EF 0603 00708 BTFSC STATUS,C
01F0 0BEB 00709 GOTO Loop_C
01F1 0064 00710 CLRF FSR ;Lastly clear FSR reg
01F2 0800 00711 RETLW H’00’
 1997 Microchip Technology Inc. DS00585B-page 5-129

AN585
 00712
01FF 00713 ORG H’1FF’ ;RESET to Main
01FF 0B43 00714 GOTO Main
 00715
 00716 END
MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0100 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0140 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0180 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
01C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXX------------X

All other memory blocks unused.

Program Memory Words Used: 500
Program Memory Words Free: 12

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed
DS00585B-page 5-130 1997 Microchip Technology Inc.

AN585
APPENDIX D:
MPASM 01.40 Released APP_D.ASM 1-16-1997 17:10:05 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 list p=16C64,t=ON,c=132
 00002 ;
 00003 ;***
 00004 ;
 00005 ; ‘Remote Alarm64’ V1.00
 00006 ; Designed by Myriad Development Co. - Jerry Farmer
 00007 ; PIC16C64, 4MHz Crystal, WatchDog Timer OFF, MPASM instruction set
 00008 ; PIC16C54, 4MHz Crystal, WatchDog Timer OFF
 00009 ; Program: APP_D.ASM
 00010 ; Revision Date:
 00011 ; 1-15-97 Compatibility with MPASMWIN 1.40
 00012 ;
 00013 ;***
 00014 ;
 00015
 00016 include “P16C64.INC”
 00001 LIST
 00002 ;P16C64.INC Standard Header File,Ver. 1.01 Microchip Technology, Inc.
 00238 LIST
 00017
 00018 ; B Register Definitions
 00000000 00019 Serial_IN_1 equ 0 ;Serial Input #1 - 8 bits - INT pin
 00020 ;RB.7 - RB.1 == Input from Sensors
 000000FF 00021 RB_TRIS equ B’11111111’ ;RB TRIS at INIT State == all input
 00000000 00022 RB_MASK equ B’00000000’ ;What is High/Low for RB at INIT State
 00023
 00024 ; A Register Definitions - Programmable Inputs
 00000000 00025 Level_Reset equ 0 ;PORTA.0 - Reset Level Indicator
 00000001 00026 LED equ 1 ;LED Output - Level/State Indicator
 00000002 00027 Serial_Out equ 2 ;Serial Output - 8 bits + passwords
 00000003 00028 PWM_Out equ 3 ;PWM Output - 8 bits ON, 8 bits OFF
 00029
 000000F1 00030 RA_TRIS equ B’11110001’ ;RA TRIS at INIT State
 00000000 00031 RA_MASK equ B’00000000’ ;What is High/Low for RA at INIT State
 00032
 00033 ; Register Files
 00000020 00034 temp equ 20h ;Temporary holding register - PIC16C54/56
 00000021 00035 tmp equ 21h ;Temporary reg
 00000022 00036 Temp_W equ 22h ;Interrupt storage of W
 00000023 00037 Temp_Stat equ 23h ;Interrupt storage of STATUS
 00000024 00038 Temp_FSR equ 24h ;Interrupt storage of FSR
 00000025 00039 T_B equ 25h ;Indicates which Timer(s) are Active = 1
 00000026 00040 FLAGS equ 26h ;Error Flags
 00000027 00041 LED_Mode equ 27h ;(0-2)=Mode, 3=LED_B, (4-6)=Seq #, 7=NEW
 00000028 00042 OState equ 28h ;Serial Out State
 00000029 00043 IState1 equ 29h ;Serial In #1 State
 0000002A 00044 cc equ 2Ah ;256 * TMR0 time
 0000002B 00045 T_5_M_LO equ 2Bh ;5 Min Timer Counter - Low
 0000002C 00046 T_5_M_HI equ 2Ch ;5 Min Timer Counter - High
 0000002D 00047 T_5_S_CO equ 2Dh ;5 Second Timer - lack of Serial Input
 0000002E 00048 T_20_mS_CO equ 2Eh ;20 mS Timer - used for debouncing
 0000002F 00049 T_PWM_CO equ 2Fh ;PWM Counter
 00000030 00050 LED_C equ 30h ;LED Counter
 00000031 00051 xmt_byte equ 31h ;Serial xmit byte - destroyed in use

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).
 1997 Microchip Technology Inc. DS00585B-page 5-131

AN585
 00000032 00052 rcv_byte_1 equ 32h ;Receive Serial #1 In byte
 00000033 00053 RCV_Storage equ 33h ;Long term storage of rcv_byte #1
 00000034 00054 Old_RB equ 34h ;Oldest/Master copy of RB
 00000035 00055 Last_RB equ 35h ;Last copy of RB
 00000036 00056 PWM_ON equ 36h ;PWM ON Counter
 00000037 00057 PWM_OFF equ 37h ;PWM OFF Counter
 00000038 00058 PWM_tmp equ 38h ;PWM temporary counter
 00059
 00060 ; Indicates which Timer(s) are Active = 1 & Flags - T_B
 00000000 00061 OState_B equ 0 ;Serial Out Active Bit
 00000001 00062 IState1_B equ 1 ;Serial IN #1 Active Bit
 00000002 00063 T_5_S_B equ 2 ;5 Second Timer Active Bit
 00000003 00064 T_5_M_B equ 3 ;5 Min Timer Active Bit
 00000004 00065 RCV_Got_One_B equ 4 ;Got a NEW Received byte to send out
 00000005 00066 RB_NEW_B equ 5 ;Indicates a change in RB input
 00000006 00067 S_5_S_B equ 6 ;Serial In 5 secs of inactivity
 00000007 00068 T_PWM_B equ 7 ;PWM Activity Bit
 00069
 00070 ; Error Flags - FLAGS
 00000000 00071 FS_Flag_1 equ 0 ;Serial #1 IN had a False Start Error
 00000001 00072 FE_Flag_1 equ 1 ;Last Serial #1 IN had a Frame Error
 00000002 00073 RCV_Overflow equ 2 ;Lost Serial Input Byte - too Slow
 00000003 00074 RB_Overflow equ 3 ;Lost RB Input Byte - too Slow
 00000004 00075 S_5_S_Overflow equ 4 ;Lost ‘5S Inactivity’ msg - too Slow
 00000005 00076 Time_Bit equ 5 ;Indicate 512 uS has passed
 00077
 00078 ;Equates for LED Task #7 - LED_Mode
 00000003 00079 LED_B equ 3 ;LED is active - LED_Mode.3
 00000007 00080 LED_NEW_B equ 7 ;LED has just changed Modes = 1
 00000008 00081 LED_OFF_MODE equ B’00001000’ ;LED OFF
 00000089 00082 LED_SEQ1_MODE equ B’10001001’ ;LED Sequence 1: .2s On, 1s Off
 0000008A 00083 LED_SEQ2_MODE equ B’10001010’ ;LED Sequence 2: 3x(.2s), 1s Off
 0000008B 00084 LED_SEQ3_MODE equ B’10001011’ ;LED Sequence 3: 5x(.2s), 1s Off
 0000009C 00085 LED_SLOW_MODE equ B’10011100’ ;LED Slow Pulsing - .3 Hz
 0000009D 00086 LED_MEDIUM_MODE equ B’10011101’ ;LED Medium Pulsing - 1 Hz
 0000009E 00087 LED_FAST_MODE equ B’10011110’ ;LED Fast Pulsing - 3 Hz
 0000008F 00088 LED_ON_MODE equ B’10001111’ ;LED ON Continuously
 00089
0000 00090 ORG 0 ;Reset Vector
 00091
0000 28F7 00092 GOTO Main
 00093
0004 00094 ORG 4 ;Interrupt Vector
 00095
0004 29D4 00096 GOTO Interrupt
 00097
 00098 ;****** Task #1 - Asynchronous 9600 Baud Serial Output (LOW=0)
0005 00099 Do_OState
0005 0828 00100 MOVF OState,W ;Get (0-A) mode #
0006 390F 00101 ANDLW H’0F’ ;Get only mode #
0007 0782 00102 ADDWF PCL, F ;jump to subroutine
0008 2814 00103 GOTO OStateS ;Serial Start Bit
0009 2823 00104 GOTO OState0_7 ;Bit 0
000A 2823 00105 GOTO OState0_7 ;Bit 1
000B 2823 00106 GOTO OState0_7 ;Bit 2
000C 2823 00107 GOTO OState0_7 ;Bit 3
000D 2823 00108 GOTO OState0_7 ;Bit 4
000E 2823 00109 GOTO OState0_7 ;Bit 5
000F 2823 00110 GOTO OState0_7 ;Bit 6
0010 2823 00111 GOTO OState0_7 ;Bit 7
0011 2829 00112 GOTO OStateE ;Serial Stop Bit
0012 2831 00113 GOTO OStateL ;Last State
0013 0008 00114 RETURN
 00115
0014 00116 OStateS
0014 3000 00117 MOVLW H’00’ ;Post & Pre 1=1 & OFF
DS00585B-page 5-132 1997 Microchip Technology Inc.

AN585
0015 0092 00118 MOVWF T2CON
0016 1683 00119 BSF STATUS,RP0 ;Point to BANK 1
0017 3053 00120 MOVLW H’68’ - H’15’ ;104uS - 9600 Baud & adjust to Latency
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0018 0092 00121 MOVWF PR2
0019 1283 00122 BCF STATUS,RP0 ;Point to BANK 0
001A 0191 00123 CLRF TMR2 ;Init to 0
001B 108C 00124 BCF PIR1,TMR2IF ;Clear Timer 2 Flag so as to start fresh
001C 1505 00125 BSF PORTA,Serial_Out;Output ‘Serial Start Bit’ starting Now
001D 1512 00126 BSF T2CON,TMR2ON ;Start Timer 2
001E 0AA8 00127 INCF OState, F ;inc to next state BEFORE allowing interrupt
 00128
001F 1683 00129 BSF STATUS,RP0 ;Point to BANK 1
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0020 148C 00130 BSF PIE1,TMR2IE ;Allow for Timer 2 interrupts
0021 1283 00131 BCF STATUS,RP0 ;Point to BANK 0
0022 0008 00132 RETURN
 00133
0023 00134 OState0_7 ;Bit 0 - 7
0023 0CB1 00135 RRF xmt_byte, F ;Move bit into C from right most bit
0024 1C03 00136 BTFSS STATUS,C ;Output C bit
0025 1105 00137 BCF PORTA,Serial_Out ;
0026 1803 00138 BTFSC STATUS,C ;
0027 1505 00139 BSF PORTA,Serial_Out ;
0028 282A 00140 GOTO OS_End
0029 00141 OStateE
0029 1105 00142 BCF PORTA,Serial_Out ;Serial Stop Bit
002A 108C 00143 OS_End BCF PIR1,TMR2IF ;Clear Timer 2 Flag so as to start fresh
002B 1683 00144 BSF STATUS,RP0 ;Point to BANK 1
002C 306C 00145 MOVLW H’68’ + H’4 ;104uS - 9600 Baud & adjust to Latency
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
002D 0092 00146 MOVWF PR2
002E 1283 00147 BCF STATUS,RP0 ;Point to BANK 0
002F 0AA8 00148 INCF OState, F ;increment to next state
0030 0008 00149 RETURN
0031 00150 OStateL
0031 1683 00151 BSF STATUS,RP0 ;Point to BANK 1
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0032 108C 00152 BCF PIE1,TMR2IE ;Do NOT Allow Timer 2 interrupts
0033 1283 00153 BCF STATUS,RP0 ;Point to BANK 0
 00154
0034 108C 00155 BCF PIR1,TMR2IF ;Clear Timer 2 Flag so as to start fresh
0035 1112 00156 BCF T2CON,TMR2ON ;Stop Timer 2
0036 01A8 00157 CLRF OState ;Ready to send next byte out
0037 1025 00158 BCF T_B,OState_B ;Serial Out not active
0038 0008 00159 RETURN
 00160
 00161 ;****** Task #7 - Output Highest Level Indication on LED
0039 00162 Do_LED
0039 1BA7 00163 BTFSC LED_Mode,LED_NEW_B;Initialize regs if change in modes
003A 284C 00164 GOTO LED_NEW
003B 0AB0 00165 INCF LED_C, F ;Inc Counter - Time Unit = 131072 uS
003C 0827 00166 MOVF LED_Mode,W ;Get (0-7) mode #
003D 3907 00167 ANDLW H’07’ ;Get only mode #
003E 0782 00168 ADDWF PCL, F ;jump to subroutine
003F 2848 00169 GOTO LED_OFF ;LED OFF
0040 2864 00170 GOTO LED_SEQ1 ;LED Seq 1: 1 short pulse & pause
0041 2867 00171 GOTO LED_SEQ2 ;LED Seq 2: 2 short pulses & pause
0042 288A 00172 GOTO LED_SEQ3 ;LED Seq 3: 3 short pulses & pause
0043 2850 00173 GOTO LED_SLOW ;LED Slow Pulsing - .3 Hz
0044 285E 00174 GOTO LED_MEDIUM ;LED Medium Pulsing - 1 Hz
0045 2861 00175 GOTO LED_FAST ;LED Fast Pulsing - 3 Hz
0046 284D 00176 GOTO LED_ON ;LED ON Continuously
0047 0008 00177 _0012 RETURN
 00178 ;------
0048 00179 LED_OFF
 1997 Microchip Technology Inc. DS00585B-page 5-133

AN585
0048 1085 00180 BCF PORTA,LED ;Turn off LED
0049 11A7 00181 BCF LED_Mode,LED_B ;LED must be off
004A 01B0 00182 CLRF LED_C ;Reset Counter - LED_C = 0
004B 0008 00183 RETURN
 00184 ;------
004C 00185 LED_NEW
004C 13A7 00186 BCF LED_Mode,LED_NEW_B ;Done initializing
004D 00187 LED_ON
004D 1485 00188 BSF PORTA,LED ;Turn on LED
004E 01B0 00189 CLRF LED_C ;Reset Counter - LED_C = 0
004F 0008 00190 RETURN
 00191 ;------
0050 00192 LED_SLOW
0050 300C 00193 MOVLW H’0C’ ;.3Hz @ 50% Duty
0051 00A0 00194 MOVWF temp
0052 0820 00195 LED_S MOVF temp,W ;Check LED_C if time, .3Hz @ 50% Duty
0053 0230 00196 SUBWF LED_C,W
0054 1D03 00197 BTFSS STATUS,Z
0055 2847 00198 GOTO _0012
0056 3010 00199 MOVLW H’10’
0057 06A7 00200 XORWF LED_Mode, F ;Switch states
0058 1E27 00201 BTFSS LED_Mode,4 ;Now make LED same state
0059 1085 00202 BCF PORTA,LED
005A 1A27 00203 BTFSC LED_Mode,4
005B 1485 00204 BSF PORTA,LED
005C 01B0 00205 CLRF LED_C ;Reset LED_C
005D 0008 00206 RETURN
 00207 ;------
005E 00208 LED_MEDIUM
005E 3004 00209 MOVLW H’04’ ;1Hz @ 50% Duty
005F 00A0 00210 MOVWF temp
0060 2852 00211 GOTO LED_S ;Go do it
 00212 ;------
0061 00213 LED_FAST
0061 3001 00214 MOVLW H’01’ ;3Hz @ 50% Duty
0062 00A0 00215 MOVWF temp
0063 2852 00216 GOTO LED_S ;Go do it
 00217 ;------
0064 00218 LED_SEQ1 ;.2 ON, 1 OFF
0064 1E27 00219 BTFSS LED_Mode,4 ;Skip if bit is high
0065 2876 00220 GOTO ON1 ;Go do it
0066 2882 00221 GOTO OFF3 ;Go do it
 00222 ;------
0067 00223 LED_SEQ2 ;.2 ON, .2 OFF, .2 ON, 1 OFF
0067 0827 00224 MOVF LED_Mode,W
0068 00A0 00225 MOVWF temp
0069 3030 00226 MOVLW H’30’ ;Get sequence # only
006A 05A0 00227 ANDWF temp, F
006B 0EA0 00228 SWAPF temp, F ;swap nibbles
006C 0820 00229 MOVF temp,W ;get nibble for offset
006D 0782 00230 ADDWF PCL, F ;Table jump calculation
006E 2876 00231 GOTO ON1 ;LED is on, check if time to change
006F 287C 00232 GOTO OFF2 ;LED is off, check if time to change
0070 2876 00233 GOTO ON1 ;LED is on, check if time to change
0071 2882 00234 GOTO OFF3 ;LED is off, check if time to change
 00235 ;------
0072 00236 LED_Exit
0072 3010 00237 MOVLW H’10’ ;Inc Seq #
0073 07A7 00238 ADDWF LED_Mode, F
0074 01B0 00239 CLRF LED_C ;Reset LED_C
0075 0008 00240 RETURN
0076 00241 ON1
0076 3002 00242 MOVLW H’02’ ;Check LED_C if time, .2 sec-on
0077 0230 00243 SUBWF LED_C,W
0078 1D03 00244 BTFSS STATUS,Z
0079 2847 00245 GOTO _0012
DS00585B-page 5-134 1997 Microchip Technology Inc.

AN585
007A 1085 00246 BCF PORTA,LED ;Turn off LED
007B 2872 00247 GOTO LED_Exit
007C 00248 OFF2
007C 3002 00249 MOVLW H’02’ ;Check LED_C if time, .2 sec-on
007D 0230 00250 SUBWF LED_C,W
007E 1D03 00251 BTFSS STATUS,Z
007F 2847 00252 GOTO _0012
0080 1485 00253 BSF PORTA,LED ;Turn on LED
0081 2872 00254 GOTO LED_Exit
0082 00255 OFF3
0082 3008 00256 MOVLW H’08’ ;Check LED_C if time, 1 sec-off
0083 0230 00257 SUBWF LED_C,W
0084 1D03 00258 BTFSS STATUS,Z
0085 2847 00259 GOTO _0012
0086 1485 00260 BSF PORTA,LED ;Turn on LED
0087 30F0 00261 MOVLW H’F0’
0088 04A7 00262 IORWF LED_Mode, F ;Cause (Seq# & NEW) to overflow to 0
0089 2872 00263 GOTO LED_Exit
008A 00264 LED_SEQ3 ;.2 ON, .2 OFF, .2 ON, .2 OFF, .2 ON, 1 OFF
008A 0827 00265 MOVF LED_Mode,W ;Get LED info
008B 00A0 00266 MOVWF temp
008C 3070 00267 MOVLW H’70’ ;Get sequence # only
008D 05A0 00268 ANDWF temp, F
008E 0EA0 00269 SWAPF temp, F ;swap nibbles
008F 0820 00270 MOVF temp,W ;get nibble for offset
0090 0782 00271 ADDWF PCL, F ;Table jump calculation
0091 2876 00272 GOTO ON1 ;LED is on check if time to change
0092 287C 00273 GOTO OFF2 ;LED is off check if time to change
0093 2876 00274 GOTO ON1 ;LED is on check if time to change
0094 287C 00275 GOTO OFF2 ;LED is off check if time to change
0095 2876 00276 GOTO ON1 ;LED is on check if time to change
0096 2882 00277 GOTO OFF3 ;LED is off check if time to change
 00278
 00279 ;****** Task #2 - Asynchronous 4800 Baud Serial Input (LOW=0)
0097 00280 Do_I1State
0097 0829 00281 MOVF IState1,W ;Get (0-B) mode #
0098 390F 00282 ANDLW H’0F’ ;Get only mode #
0099 0782 00283 ADDWF PCL, F ;jump to subroutine
009A 28A7 00284 GOTO I1StateS ;Serial Start Bit
009B 28B8 00285 GOTO I1State2 ;1/2 of Start Bit - see if False Start
009C 28C5 00286 GOTO I1State0_7 ;Bit 0
009D 28C5 00287 GOTO I1State0_7 ;Bit 1
009E 28C5 00288 GOTO I1State0_7 ;Bit 2
009F 28C5 00289 GOTO I1State0_7 ;Bit 3
00A0 28C5 00290 GOTO I1State0_7 ;Bit 4
00A1 28C5 00291 GOTO I1State0_7 ;Bit 5
00A2 28C5 00292 GOTO I1State0_7 ;Bit 6
00A3 28C5 00293 GOTO I1State0_7 ;Bit 7
00A4 28D4 00294 GOTO I1StateE ;Serial Stop Bit
00A5 28DF 00295 GOTO I1StateL ;Last State - End of Stop Bit
00A6 0008 00296 RETURN
 00297
 00298 ;*** Subroutines for Task #2
00A7 00299 I1StateS ;Start Bit - Setup timing variables
00A7 120B 00300 BCF INTCON,INTE ;Disable detecting changes on INT pin
00A8 108B 00301 BCF INTCON,INTF ;Clear Interrupting Flag
00A9 3000 00302 MOVLW H’00’ ;Internal Clk, Pre 1=1 & OFF
00AA 0090 00303 MOVWF T1CON
00AB 018E 00304 CLRF TMR1L ;Calculate (0 - #) of counts until roll-over
00AC 304A 00305 MOVLW H’68’ - H’1E’ ;208us/2 = 4800 Baud & adjust to Latency
00AD 028E 00306 SUBWF TMR1L, F
00AE 018F 00307 CLRF TMR1H
00AF 038F 00308 DECF TMR1H, F ;H’FF’
00B0 100C 00309 BCF PIR1,TMR1IF ;Clear Timer 1 Flag so as to start fresh
00B1 1410 00310 BSF T1CON,TMR1ON ;Start Timer 1
00B2 0AA9 00311 INCF IState1, F ;inc to next state BEFORE allowing interrupts
 1997 Microchip Technology Inc. DS00585B-page 5-135

AN585
00B3 14A5 00312 BSF T_B,IState1_B ;Serial Input Active
 00313
00B4 1683 00314 BSF STATUS,RP0 ;Point to BANK 1
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
00B5 140C 00315 BSF PIE1,TMR1IE ;Allow for Timer 1 interrupts
00B6 1283 00316 BCF STATUS,RP0 ;Point to BANK 0
00B7 0008 00317 RETURN
00B8 00318 I1State2 ;Check if still a Start Bit
00B8 1C06 00319 BTFSS PORTB,Serial_IN_1 ;False Start Error ?
00B9 28E9 00320 GOTO FS_Error_1
00BA 1026 00321 BCF FLAGS,FS_Flag_1 ;Start Bit OK
00BB 1010 00322 BCF T1CON,TMR1ON ;Stop Timer 1
00BC 018E 00323 CLRF TMR1L
00BD 30AA 00324 MOVLW H’D0’ - H’26’ ;208us = 4800 Baud & adjust to Latency
00BE 028E 00325 SUBWF TMR1L, F
00BF 018F 00326 CLRF TMR1H
00C0 038F 00327 DECF TMR1H, F ;H’FF’
00C1 100C 00328 BCF PIR1,TMR1IF ;Clear Timer 1 Flag so as to start fresh
00C2 1410 00329 BSF T1CON,TMR1ON ;Start Timer 1
00C3 0AA9 00330 INCF IState1, F ;increment to next state
00C4 0008 00331 RETURN
00C5 00332 I1State0_7 ;Bit 0 - 7
00C5 1C06 00333 BTFSS PORTB,Serial_IN_1 ;Move Input bit into C
00C6 1003 00334 BCF STATUS,C
00C7 1806 00335 BTFSC PORTB,Serial_IN_1
00C8 1403 00336 BSF STATUS,C
00C9 0CB2 00337 RRF rcv_byte_1, F ;Move C into left most bit
00CA 1010 00338 BCF T1CON,TMR1ON ;Stop Timer 1
00CB 018E 00339 CLRF TMR1L
00CC 30AA 00340 MOVLW H’D0’ - H’26’ ;208us = 4800 Baud & adjust to Latency
00CD 028E 00341 SUBWF TMR1L, F
00CE 018F 00342 CLRF TMR1H
00CF 038F 00343 DECF TMR1H, F ;H’FF’
00D0 100C 00344 BCF PIR1,TMR1IF ;Clear Timer 1 Flag so as to start fresh
00D1 1410 00345 BSF T1CON,TMR1ON ;Start Timer 1
00D2 0AA9 00346 INCF IState1, F ;increment to next state
00D3 0008 00347 RETURN
00D4 00348 I1StateE ;Check if we have a proper Stop Bit
00D4 1806 00349 BTFSC PORTB,Serial_IN_1 ;Frame Error
00D5 28EC 00350 GOTO F_Error_1
00D6 10A6 00351 BCF FLAGS,FE_Flag_1 ;Stop Bit OK
00D7 01AD 00352 CLRF T_5_S_CO ;Reset 5 Sec Timer - got a good byte
 00353 ;Process the msg Here !
00D8 0832 00354 MOVF rcv_byte_1,W ;Make a copy of just received byte
00D9 00B3 00355 MOVWF RCV_Storage
00DA 1E25 00356 BTFSS T_B,RCV_Got_One_B ;Report Lost data
00DB 1126 00357 BCF FLAGS,RCV_Overflow
00DC 1A25 00358 BTFSC T_B,RCV_Got_One_B
00DD 1526 00359 BSF FLAGS,RCV_Overflow
00DE 1625 00360 BSF T_B,RCV_Got_One_B ;We Now have a RB Value to go out
00DF 00361 I1StateL
00DF 1010 00362 BCF T1CON,TMR1ON ;Stop Timer 1
00E0 1683 00363 BSF STATUS,RP0 ;Point to BANK 1
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
00E1 140C 00364 BSF PIE1,TMR1IE ;Allow for Timer 1 interrupts
00E2 1283 00365 BCF STATUS,RP0 ;Point to BANK 0
00E3 100C 00366 BCF PIR1,TMR1IF ;Clear Timer 1 Flag so as to start fresh
 00367
00E4 01A9 00368 CLRF IState1 ;Ready to receive next byte
00E5 10A5 00369 BCF T_B,IState1_B ;Serial In not currently active
 00370
00E6 108B 00371 BCF INTCON,INTF ;Clear Interrupting Flag
00E7 160B 00372 BSF INTCON,INTE ;Enable detecting changes on INT pin
00E8 0008 00373 RETURN
00E9 00374 FS_Error_1 ;False Start - Shut Down Checking
00E9 10A5 00375 BCF T_B,IState1_B ;Serial Input NOT Active
DS00585B-page 5-136 1997 Microchip Technology Inc.

AN585
00EA 1426 00376 BSF FLAGS,FS_Flag_1 ;False Start Error
00EB 28DF 00377 GOTO I1StateL ;Start All Over
00EC 00378 F_Error_1 ;Frame Error - Wait for End of Stop Bit
00EC 14A6 00379 BSF FLAGS,FE_Flag_1 ;Frame Error for this Byte ?
00ED 0AA9 00380 INCF IState1, F ;Increment to next state
00EE 1010 00381 BCF T1CON,TMR1ON ;Stop Timer 1
00EF 018E 00382 CLRF TMR1L
00F0 304A 00383 MOVLW H’68’ - H’1E’ ;208us/2 = 4800 Baud & adjust to Latency
00F1 028E 00384 SUBWF TMR1L, F
00F2 018F 00385 CLRF TMR1H
00F3 038F 00386 DECF TMR1H, F ;H’FF’
00F4 100C 00387 BCF PIR1,TMR1IF ;Clear Timer 1 Flag so as to start fresh
00F5 1410 00388 BSF T1CON,TMR1ON ;Start Timer 1
00F6 0008 00389 RETURN
 00390
 00391 ;****** Code Starting point
00F7 00392 Main
00F7 0183 00393 CLRF STATUS
00F8 0184 00394 CLRF FSR
00F9 0181 00395 CLRF TMR0 ;Clear Timer0
00FA 3000 00396 MOVLW H’00’ ;What is High/Low for RA at RESET State
00FB 0085 00397 MOVWF PORTA
00FC 0086 00398 MOVWF PORTB
00FD 0087 00399 MOVWF PORTC
00FE 0088 00400 MOVWF PORTD
00FF 0089 00401 MOVWF PORTE
0100 018A 00402 CLRF PCLATH
0101 3060 00403 MOVLW H’60’ ;/GIE,PEIE,T0IE,/INTE,/RBIE,/T0IF,/INTF,/RBIF
0102 008B 00404 MOVWF INTCON
0103 018C 00405 CLRF PIR1 ;Timer 2 Flag cleared
0104 018E 00406 CLRF TMR1L
0105 018F 00407 CLRF TMR1H
0106 0190 00408 CLRF T1CON ;Timer 1 OFF until ready for input
0107 0191 00409 CLRF TMR2
0108 0192 00410 CLRF T2CON ;Timer 2 OFF until have byte to output
0109 0193 00411 CLRF SSPBUF
010A 0194 00412 CLRF SSPCON
010B 0195 00413 CLRF CCPR1L
010C 0196 00414 CLRF CCPR1H
010D 0197 00415 CLRF CCP1CON
 00416
010E 1683 00417 BSF STATUS,RP0 ;Point to BANK 1
010F 3040 00418 MOVLW H’40’ ;TMR0/2 & Interrupt on Rising edge of INT
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0110 0081 00419 MOVWF OPTION_REG ;Load OPTION reg
0111 30F1 00420 MOVLW RA_TRIS
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0112 0085 00421 MOVWF TRISA
0113 30FF 00422 MOVLW H’FF’ ;RB TRIS at RESET State
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0114 0086 00423 MOVWF TRISB
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0115 0087 00424 MOVWF TRISC
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0116 0088 00425 MOVWF TRISD
0117 3007 00426 MOVLW H’07’ ;PSPMODE=0
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0118 0089 00427 MOVWF TRISE
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0119 018C 00428 CLRF PIE1 ;Timer 2 Interrupt disabled
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
011A 148E 00429 BSF PCON,NOT_POR
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
011B 0192 00430 CLRF PR2
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
011C 0193 00431 CLRF SSPADD
 1997 Microchip Technology Inc. DS00585B-page 5-137

AN585
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
011D 0194 00432 CLRF SSPSTAT
 00433
011E 1283 00434 BCF STATUS,RP0 ;Point to BANK 0
011F 21BF 00435 CALL Clear_Regs ;Clear Registers 20-7F, A0-C0 Memory Pages
 00436
 00437 ;Initialize Tasks
 00438 ;Task #1 waits for byte to output
 00439 ;Task #2 waits for Serial IN Start Bit
0120 3031 00440 MOVLW H’31’ ;Task #3 is initialized for square pulses
0121 00B6 00441 MOVWF PWM_ON ; “ 25 mS ON
0122 3031 00442 MOVLW H’31’ ; “ Period = 50 mS, DS= 50%
0123 00B7 00443 MOVWF PWM_OFF ; “ 25 mS OFF
0124 01AF 00444 CLRF T_PWM_CO ; “
0125 0836 00445 MOVF PWM_ON,W ;move PWM_tmp,PWM_ON
0126 00B8 00446 MOVWF PWM_tmp ; “
0127 1585 00447 BSF PORTA,PWM_Out ;Start Outputting ON
0128 17A5 00448 BSF T_B,T_PWM_B ; “
 00449 ;Task #4 runs when Task 1 is Not
 00450 ;Task #5 is always running
0129 0806 00451 MOVF PORTB,W ;Task #6 is Initialized here
012A 00B4 00452 MOVWF Old_RB
012B 0834 00453 MOVF Old_RB,W ;Make all the same initial value
012C 00B5 00454 MOVWF Last_RB
012D 16A5 00455 BSF T_B,RB_NEW_B ;Tell Task #4: RB byte ready to output
012E 3008 00456 MOVLW LED_OFF_MODE
012F 00A7 00457 MOVWF LED_Mode ;Task #7 is Started
0130 1525 00458 BSF T_B,T_5_S_B ;Task #8 is Started here
0131 15A5 00459 BSF T_B,T_5_M_B ;Task #9 is Started here
 00460
0132 178B 00461 BSF INTCON,GIE ;Enable Global Interrupts
 00462
 00463 ; Handle Task & Timer activities - Main Loop done in background
0133 00464 Inc_Time ;Heart Beat - Time unit = 512 uS for Tasks #5 & #6
0133 1EA6 00465 BTFSS FLAGS,Time_Bit ;Idle Task - wait until 512 uS has gone by
0134 2933 00466 GOTO Inc_Time
0135 12A6 00467 BCF FLAGS,Time_Bit ;Reset for next indicator
 00468 ;from TMR0 Interrupt
0136 00469 Task_3 ;Task #3 - PWM, Period = (PWM_ON + PWM_OFF) * 512uS
0136 1FA5 00470 BTFSS T_B,T_PWM_B ;if NOT outputting now then skip call
0137 2947 00471 GOTO Task_4
0138 0AAF 00472 INCF T_PWM_CO, F ;Inc count of time
0139 0838 00473 MOVF PWM_tmp,W ;cjne T_PWM_CO,PWM_tmp,Task_4
013A 022F 00474 SUBWF T_PWM_CO,W ; “
013B 1D03 00475 BTFSS STATUS,Z ; “
013C 2947 00476 GOTO Task_4 ; “
013D 01AF 00477 CLRF T_PWM_CO ;Reset timer
013E 1985 00478 BTFSC PORTA,PWM_Out
013F 2944 00479 GOTO T3_1
0140 1585 00480 BSF PORTA,PWM_Out ;Change Output State
0141 0836 00481 MOVF PWM_ON,W ;move PWM_tmp,PWM_ON
0142 00B8 00482 MOVWF PWM_tmp ; “
0143 2947 00483 GOTO Task_4
0144 00484 T3_1
0144 1185 00485 BCF PORTA,PWM_Out ;Change Output State
0145 0837 00486 MOVF PWM_OFF,W ;mov PWM_tmp,PWM_OFF
0146 00B8 00487 MOVWF PWM_tmp ; “
 00488
0147 00489 Task_4 ;Task #4 - Finds next Buffered Byte to Send Out through Task 1
0147 1825 00490 BTFSC T_B,OState_B ;if outputting now then skip call
0148 295E 00491 GOTO Task_5
0149 1E25 00492 BTFSS T_B,RCV_Got_One_B ;Got a NEW Received byte to send
014A 2950 00493 GOTO _0057
014B 0833 00494 MOVF RCV_Storage,W ;Send just received byte
014C 00B1 00495 MOVWF xmt_byte
014D 1225 00496 BCF T_B,RCV_Got_One_B ;Clear need to send old byte
DS00585B-page 5-138 1997 Microchip Technology Inc.

AN585
014E 1425 00497 BSF T_B,OState_B ;Start Task #1 & Lock Out Others
014F 295D 00498 GOTO T4_S
0150 1EA5 00499 _0057 BTFSS T_B,RB_NEW_B ;Indicates a change in RB input
0151 2957 00500 GOTO _0058
0152 0834 00501 MOVF Old_RB,W ;Send New RB value
0153 00B1 00502 MOVWF xmt_byte
0154 12A5 00503 BCF T_B,RB_NEW_B ;Clear need to send out newest value
0155 1425 00504 BSF T_B,OState_B ;Start Task #1 & Lock Out Others
0156 295D 00505 GOTO T4_S
0157 1F25 00506 _0058 BTFSS T_B,S_5_S_B ;Serial In 5 secs of inactivity
0158 295E 00507 GOTO Task_5
0159 30FF 00508 MOVLW H’FF’ ;Tell of inactivity of Serial In
015A 00B1 00509 MOVWF xmt_byte
015B 1325 00510 BCF T_B,S_5_S_B ;Clear need to send msg
015C 1425 00511 BSF T_B,OState_B ;Start Task #1 & Lock Out Others
015D 00512 T4_S ;Start Task #1
015D 2005 00513 CALL Do_OState
 00514
015E 00515 Task_5 ;Task #5 - Monitor Level Reset Input Line - Always Running !
015E 1805 00516 BTFSC PORTA,Level_Reset
015F 2962 00517 GOTO Task_6
0160 3008 00518 MOVLW LED_OFF_MODE ;Lowest Level Indicator output
0161 00A7 00519 MOVWF LED_Mode
 00520
0162 00521 Task_6 ;Task #6 - Debounce 8 bit Input Sensors - Runs every 20 mS
0162 0AAE 00522 INCF T_20_mS_CO, F ;Inc Counter - Time Unit = 512 uS
0163 3027 00523 MOVLW H’27’ ;Used to debounce the input
0164 022E 00524 SUBWF T_20_mS_CO,W
0165 1D03 00525 BTFSS STATUS,Z
0166 297C 00526 GOTO _0065
0167 01AE 00527 CLRF T_20_mS_CO ;Reset T_20_mS_CO to start over again
0168 0806 00528 MOVF PORTB,W ;Last copy of RB same as Current ?
0169 0235 00529 SUBWF Last_RB,W
016A 1903 00530 BTFSC STATUS,Z
016B 296F 00531 GOTO _0062
016C 0806 00532 MOVF PORTB,W ;Store Current RB - diff from Last
016D 00B5 00533 MOVWF Last_RB
016E 2971 00534 GOTO _0063
016F 0835 00535 _0062 MOVF Last_RB,W ;New Old RB <- same value over 20 mS
0170 00B4 00536 MOVWF Old_RB
0171 08B4 00537 _0063 MOVF Old_RB, F ;See if RB is now 0
0172 1903 00538 BTFSC STATUS,Z ;RB == 0 ? then keep timer running
0173 2976 00539 GOTO _0064
0174 01AB 00540 CLRF T_5_M_LO ;Reset 5 Min Timer
0175 01AC 00541 CLRF T_5_M_HI ; still not zero yet
0176 21A8 00542 _0064 CALL D_H_E_L ;Determine the Highest Error Level
0177 1EA5 00543 BTFSS T_B,RB_NEW_B ;Check for Lost Data Error
0178 11A6 00544 BCF FLAGS,RB_Overflow
0179 1AA5 00545 BTFSC T_B,RB_NEW_B
017A 15A6 00546 BSF FLAGS,RB_Overflow
017B 16A5 00547 BSF T_B,RB_NEW_B ;Every 20 mS send Old_RB out
 00548
 00549 ;Heart Beat - Time unit = 131072 uS for Tasks #7, #8 & #9
017C 00550 _0065
017C 1683 00551 BSF STATUS,RP0 ;Point to BANK 1
017D 30F1 00552 MOVLW RA_TRIS ;RA TRIS - refresh
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
017E 0085 00553 MOVWF TRISA
017F 30FF 00554 MOVLW H’FF’ ;RB TRIS - refresh
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0180 0086 00555 MOVWF TRISB
0181 1283 00556 BCF STATUS,RP0 ;Point to BANK 0
0182 0BAA 00557 DECFSZ cc, F ;Step-up time units * 256
0183 2933 00558 GOTO Inc_Time
 00559
0184 00560 Task_7 ;Task 7 - Output Highest Level Indication on LED
 1997 Microchip Technology Inc. DS00585B-page 5-139

AN585
0184 1DA7 00561 BTFSS LED_Mode,LED_B ;Is LED active ?
0185 2987 00562 GOTO Task_8
0186 2039 00563 CALL Do_LED ;Handle LED timing
 00564
0187 00565 Task_8 ;Task #8 - 5 Second Serial Input Lack of Activity Timer
0187 1D25 00566 BTFSS T_B,T_5_S_B ;5 Sec Timer Active ?
0188 2996 00567 GOTO Task_9
0189 0AAD 00568 INCF T_5_S_CO, F ;Inc Counter - Time Unit = 131072 uS
018A 3026 00569 MOVLW H’26’ ;Check T_5_S_CO if time
018B 022D 00570 SUBWF T_5_S_CO,W
018C 1D03 00571 BTFSS STATUS,Z
018D 2996 00572 GOTO Task_9
018E 01AD 00573 CLRF T_5_S_CO ;Reset T_5_S_CO
018F 308F 00574 MOVLW LED_ON_MODE ;Highest Level Indicator output
0190 00A7 00575 MOVWF LED_Mode
0191 1F25 00576 BTFSS T_B,S_5_S_B ;Check if Lost Data Error
0192 1226 00577 BCF FLAGS,S_5_S_Overflow
0193 1B25 00578 BTFSC T_B,S_5_S_B
0194 1626 00579 BSF FLAGS,S_5_S_Overflow
0195 1725 00580 BSF T_B,S_5_S_B ;Send notice of 5 seconds of inaction
 00581
0196 00582 Task_9 ;Task #9 - 5 Min. Lack of Severe Error from Sensors Reset Timer
0196 1DA5 00583 BTFSS T_B,T_5_M_B ;5 Min Timer Active ?
0197 29A7 00584 GOTO Task_A
0198 0AAB 00585 INCF T_5_M_LO, F ;Inc LO Counter; Time Unit = 131072 uS
0199 1903 00586 BTFSC STATUS,Z ;See if carry needs to be passed on ?
019A 0AAC 00587 INCF T_5_M_HI, F ;Inc HI Counter; Time Unit = 131072 uS
019B 3008 00588 MOVLW H’08’ ;#2288< Check T_5_M_HI if time
019C 022C 00589 SUBWF T_5_M_HI,W
019D 1D03 00590 BTFSS STATUS,Z
019E 29A7 00591 GOTO Task_A
019F 30F0 00592 MOVLW H’F0’ ;#2288> Check T_5_M_LO if time
01A0 022B 00593 SUBWF T_5_M_LO,W
01A1 1D03 00594 BTFSS STATUS,Z
01A2 29A7 00595 GOTO Task_A
01A3 01AB 00596 CLRF T_5_M_LO ;Reset T_5_M_LO
01A4 01AC 00597 CLRF T_5_M_HI ;Reset T_5_M_HI
01A5 3008 00598 MOVLW LED_OFF_MODE ;Lowest Level Indicator output
01A6 00A7 00599 MOVWF LED_Mode
01A7 00600 Task_A
01A7 2933 00601 GOTO Inc_Time ;Loop Forever
 00602
 00603 ;**** Determine the Highest Error Level & Start Task #7
01A8 00604 D_H_E_L
01A8 3007 00605 MOVLW H’07’ ;Check top 7 bits
01A9 00A0 00606 MOVWF temp
01AA 0834 00607 MOVF Old_RB,W ;Get copy of 7 debounced Sensor Input
01AB 00A1 00608 MOVWF tmp
01AC 0DA1 00609 _0070 RLF tmp, F ;Put top bit into C bit
01AD 1803 00610 BTFSC STATUS,C ;Check if C bit is set
01AE 29B4 00611 GOTO _0072
01AF 0BA0 00612 DECFSZ temp, F ;Continue to check lesser bits
01B0 29AC 00613 GOTO _0070
01B1 0806 00614 _0071 MOVF PORTB,W ;Restore current value of RB
01B2 00A1 00615 MOVWF tmp
01B3 0008 00616 RETURN
01B4 0827 00617 _0072 MOVF LED_Mode,W ;Get current Level Indicator
01B5 3907 00618 ANDLW H’07’ ;Get only “ “
01B6 00A1 00619 MOVWF tmp ;Store into a temporary register
01B7 0820 00620 MOVF temp,W ;Check if already at this Level
01B8 0221 00621 SUBWF tmp,W
01B9 1803 00622 BTFSC STATUS,C
01BA 29B1 00623 GOTO _0071
01BB 3088 00624 MOVLW H’88’ ;Start to build LED_Mode
01BC 0420 00625 IORWF temp,W ;Put new Level Indicator into reg
01BD 00A7 00626 MOVWF LED_Mode ;Store new LED Mode
DS00585B-page 5-140 1997 Microchip Technology Inc.

AN585
01BE 29B1 00627 GOTO _0071
 00628
 00629 ;****** Clear Registers 20-7Fh, A0-C0
01BF 00630 Clear_Regs
01BF 307F 00631 MOVLW H’7F’ ;First regs to clear in Bank 0
01C0 0084 00632 MOVWF FSR
01C1 0180 00633 Loop_C1 CLRF INDF ;Clear reg
01C2 0384 00634 DECF FSR, F ;point to next reg to clear
01C3 3020 00635 MOVLW H’20’ ;Dec temp, jump if not done
01C4 0204 00636 SUBWF FSR,W
01C5 1803 00637 BTFSC STATUS,C
01C6 29C1 00638 GOTO Loop_C1
 00639
01C7 30C0 00640 MOVLW H’C0’ ;First regs to clear in Bank 1
01C8 0084 00641 MOVWF FSR
01C9 0180 00642 Loop_C2 CLRF INDF ;Clear reg
01CA 0384 00643 DECF FSR, F ;point to next reg to clear
01CB 30A0 00644 MOVLW H’A0’ ;Dec temp, jump if not done
01CC 0204 00645 SUBWF FSR,W
01CD 1803 00646 BTFSC STATUS,C
01CE 29C9 00647 GOTO Loop_C2
01CF 0184 00648 CLRF FSR ;Lastly clear FSR reg
01D0 0008 00649 RETURN
 00650
 00651 ;****** TMR0 IRS - Set Time_Bit for background tasks
01D1 00652 Do_Inc_Time
01D1 16A6 00653 BSF FLAGS,Time_Bit ;Tell background tasks of overflow
01D2 110B 00654 BCF INTCON,T0IF ;Clear for next overflow
01D3 0008 00655 RETURN
 00656
 00657 ;****** Handle Interrupts Here
01D4 00658 Interrupt
01D4 00A2 00659 PUSH: MOVWF Temp_W
01D5 0E03 00660 SWAPF STATUS,W
01D6 00A3 00661 MOVWF Temp_Stat
01D7 0804 00662 MOVF FSR,W
01D8 00A4 00663 MOVWF Temp_FSR
01D9 1283 00664 BCF STATUS,RP0 ;Point to BANK 0 - Very IMPORTANT !!!!!
 00665
01DA 188C 00666 BTFSC PIR1,TMR2IF
01DB 2005 00667 CALL Do_OState ;Go Do Task #1 - all states
 00668
01DC 18A5 00669 BTFSC T_B,IState1_B ;INTF will set even if INTE is cleared
01DD 29E0 00670 GOTO I1
01DE 188B 00671 BTFSC INTCON,INTF
01DF 2097 00672 CALL Do_I1State ;Go Do Task #2 - 0 state only
01E0 00673 I1:
01E0 180C 00674 BTFSC PIR1,TMR1IF
01E1 2097 00675 CALL Do_I1State ;Go Do Task #2 - 1-B states
 00676
01E2 190B 00677 BTFSC INTCON,T0IF
01E3 21D1 00678 CALL Do_Inc_Time ;Go Inc Time_Bit every 512uS
 00679
01E4 0824 00680 POP: MOVF Temp_FSR,W
01E5 0084 00681 MOVWF FSR
01E6 0E23 00682 SWAPF Temp_Stat,W
01E7 0083 00683 MOVWF STATUS
01E8 0EA2 00684 SWAPF Temp_W, F
01E9 0E22 00685 SWAPF Temp_W,W
01EA 0009 00686 RETFIE ;Return from Interrupt
 00687
 00688 END
 1997 Microchip Technology Inc. DS00585B-page 5-141

AN585
MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)
0000 : X---XXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0100 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0140 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0180 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
01C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX----- ----------------

All other memory blocks unused.

Program Memory Words Used: 488
Program Memory Words Free: 1560

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 19 reported, 0 suppressed
DS00585B-page 5-142 1997 Microchip Technology Inc.

	Introduction
	Why do I Need a Real-Time Kernel?
	What is Multitasking Anyway?
	Concepts
	Critical Section
	FIGURE 1: Task / Process State Transition Diagram

	Shared Resources
	Context Switch/Task Switch
	Scheduler
	Task Priority
	Semaphores
	Interrupts
	Analysis of Code Examples
	PIC16C54 - “Remote Alarm” Example
	FIGURE 2: Remote Alarm-PIC16C54 Example
	FIGURE 3: Serial Input States vs. Time Diagram
	FIGURE 4: Serial Output States vs. Time Diagram

	PIC16C64 - “Remote Alarm64” Example
	FIGURE 5: Remote Alarm - PIC16C64 Example

	Reentrant example
	Summary
	BIBLIOGRAPHY
	A Real-Time Vocabulary

