

M

TB024

Downloading HEX Files to External FLASH Memory

Using PIC17CXXX PICmicro

®

 Microcontrollers
INTRODUCTION

The PIC17CXXX devices have the capability to inter-
face external FLASH memory into the 64K x 16 pro-
gram memory space. Coupled with this feature is the
ability to read and write to the entire program memory
of the device. Using one of the standard serial inter-
faces on the PICmicro (USART, SPI, I2C™), a com-
plete hex file can be downloaded into the external
FLASH memory by a bootloader program. The
PIC17CXXX family consists of seven devices as shown
in Table 1

TABLE 1 FEATURES LIST

Author: Rodger Richey
Microchip Technology Inc.

Features PIC17C42A PIC17C43 PIC17C44 PIC17C756A PIC17C762 PIC17C766

Max Freq for Ops 33 MHz 33 MHz 33 MHz 33 MHz 33 MHz 33 MHz

Op Voltage Range 2.5V - 6.0V 2.5V - 6.0V 2.5V - 6.0V 3.0V - 5.5V 3.0V - 5.5V 3.0V - 5.5V

Prog Memory x16 2K 4K 8K 16K 8K 16K

Data Memory (bytes) 232 454 454 902 678 902

Hardware Multiplier Yes Yes Yes Yes Yes Yes

Timers 4 4 4 4 4 4

Capture Inputs 2 2 2 4 4 4

PWM Outputs 2 2 2 3 3 3

USART/SCI 1 1 1 2 2 2

A/D Channels - - - 12 16 16

Power-on Reset Yes Yes Yes Yes Yes Yes

Brown-out Reset - - - Yes Yes Yes

ICSP - - - Yes Yes Yes

Watchdog Timer Yes Yes Yes Yes Yes Yes

Interrupt Sources 11 11 11 18 18 18

I/O pins 33 33 33 50 66 66
 1998 Microchip Technology Inc. DS91024A-page 1

TB024

FLASH SELECTION

The first decision is what FLASH memory to use in the
circuit. This document will focus on the Am29F100
from AMD. This device has a selectable memory/inter-
face size: 128K x 8 or 64K x 16. The 16-bit interface is
chosen because the PIC17CXXX devices have 16-bit
wide program memory. The address line A15 may
need to be inverted depending on the PICmicro internal
OTP memory size and the FLASH memory selected.
The AMD device needs to access address locations
2AAAh and 5555h for program and erase operations.
For PICmicro microcontrollers with 8K or less program
memory, no inversion is necessary, but is required for

the 16K and larger devices. The address location
2AAAh in the FLASH memory is mapped on top of
internal program memory, which takes precedence.
Any access to 2AAAh will be to the internal OTP mem-
ory and not to the external FLASH memory. The inver-
sion is transparent to the designer except that program
or erase operations will use address locations AAAAh
and D555h instead due to the inversion. The Technical
Brief (TB027), Simplifying External Memory Connec-
tions of PIC17CXXX PICmicro mirocontrollers, covers
the memory mapping and circuit connection consider-
ations in more detail. Figure 1 shows a block diagram
for the external memory connections.

FIGURE 1: EXTERNAL MEMORY INTERFACE BLOCK DIAGRAM (x16 DEVICES)

MICROCONTROLLER
CONFIGURATION

The microcontroller has several operating modes. The
first being Microcontroller mode, which uses only the
internal OTP program memory. In this mode all I/O pins
function as I/O pins. The second mode is Micropro-
cessor mode, which uses only external memory. In
this mode, 19 of the I/O pins function as the external
memory interface (3 for control, 16 for address/data).
The final mode is Extended Microcontroller mode,
which uses internal OTP program memory. The
remainder of 64K is external to the device. This mode
must be used to program the external FLASH memory
and the bootloader routine must reside in the OTP
memory. Refer to the PIC17C7XX data sheet
(DS30289) or the PIC17C4X data sheet (DS30412) for
more information about processor modes. Figure 2
shows the memory map configuration for extended
microcontroller mode for the PIC17C756A.

FIGURE 2: PIC17C756A IN EXTENDED
MICROCONTROLLER MODE

AD7-AD0

PIC17CXXX

AD15-AD8

ALE

AD15-AD0

Memory

A14-A0

D15-D0

A14-A0

OE

WR

OE WR

CE

74FCT16373

A15

A15

0000h

3FFFh

FFFFh

PIC17C756A
0000h

3FFFh

FFFFh

External Memory
DS91024A-page 2  1998 Microchip Technology Inc.

TB024

HEX FILE FORMAT

The HEX file to be programmed into program memory
will be read into the microcontroller using one of its
standard interface modules: USART, SPI, or I2C. The
formats supported by the Microchip development tools
are the Intel Hex Format (INHX8M), Intel Split Hex For-
mat (INHX8S), and the Intel Hex 32 Format (INHX32).
The format required by the PIC17CXXX devices is the
INHX32 due to the 64K of address space. Please refer
to Appendix A in the MPASM User's Guide (DS33014)
for more information about HEX file formats. The
INHX32 format supports 32-bit addresses using a lin-
ear address record. The basic format of the INHX32
hex file is:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9 character prefix and
always ends with a 2 character checksum. All records
begin with a ':' regardless of the format. The individual
elements are described below.

• BB - is a two digit hexadecimal byte count repre-
senting the number of data bytes that will appear
on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four digit hexadecimal address repre-
senting the starting address of the data record.
Format is high byte first followed by low byte. The
address is doubled because this format only sup-
ports 8-bits (to find the real PICmicro address,
simply divide the value AAAA by 2).

• TT - is a two digit record type that will be '00' for
data records, '01' for end of file records and '04'
for extended address record.

• HHHH - is a four digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two digit hexadecimal checksum that is
the two's complement of the sum of all the pre-
ceding bytes in the line record.

The HEX file is composed of ASCII characters 0 thor-
ough 9 and A to F and the end of each line has a car-
riage return and linefeed. The downloader code in the
PICmicro must convert the ASCII characters to binary
numbers for use in programming.

PICmicro CODE

The code for the PIC17CXXX devices was written
using the MPLAB-C17 C compiler. A demo version of
the MPLAB-C17 C compiler is available off the
Microchip website, www.microchip.com. This code
uses USART2 on the PIC17C756A as the interface to
the PC. In addition to USART2, two I/O pins are used
to implement hardware handshaking with the PC host.
Handshaking must be used because the program time
of the FLASH memory prevents the PC from simply
streaming the data down to the PICmicro microcontrol-
ler. The PICmicro microcontroller itself does not have
enough RAM to buffer the incoming data while the
FLASH is programming. Listing 1 shows the C code.
Figure 3 shows a flowchart for the downloader code.

In this particular example, the hardware USART2 is
used to download hex files from the PC host. Hardware
handshaking is used to communicate with the PC. The
function DataRdyU2 properly asserts the handshake
signals to the PC to receive one byte of data.

Two other functions not listed read in a byte (Hex8in)
or a word (Hex16in) and return the binary value of the
ASCII characters read. Hex8in reads two characters
and converts them to an 8-bit value. Hex16in reads in
4 characters and converts them to binary. The format
for Hex16in is high byte then low byte.
 1998 Microchip Technology Inc. DS91024A-page 3

TB024

LISTING 1: HEX DOWNLOAD CODE WRITTEN FOR MPLAB™-C17
void EraseFlash(void)
{

rom int *EFp; // FLASH requires following sequence to
 unsigned int dataEF; // initiate a write

EFp = (rom int *)0xd555; // Setup pointer to D555h
*EFp = 0xaaaa; // Write data AAAAh
EFp = (rom int *)0xaaaa;
*EFp = 0x5555;
EFp = (rom int *)0xd555;
*EFp = 0x8080;
EFp = (rom int *)0xd555;
*EFp = 0xaaaa;
EFp = (rom int *)0xaaaa;
*EFp = 0x5555;
EFp = (rom int *)0xd555;
*EFp = 0x1010;
EFp = (rom int *)0x8000;
do // Wait for FLASH to erase

 {
 dataEF = *EFp;
 if(dataEF & 0x0020)
 Nop();
 Nop();
 } while(!(dataEF&0x0080));

return;
}
void ProgPreamble(void)
{ // FLASH requires a preamble before each

rom int *PPp; // word that is programmed

PPp = (rom int *)0xd555; // Setup pointer to D555h
*PPp = 0xaaaa; // Write data AAAAh
PPp = (rom int *)0xaaaa;
*PPp = 0x5555;
PPp = (rom int *)0xd555;
*PPp = 0xa0a0;
return;

}
char DownloadHex(void)
{

unsigned char ByteCount,RecType,Checksum,FChecksum;
unsigned char DHi,Errors;
unsigned char bytes;
unsigned int AddrL,AddrH;
unsigned int HexData;

 unsigned char temp;
 char str[5];

rom int *DHp;

 EraseFlash(); // Erase FLASH
AddrH = 0; // Make high address word 0
while(1) //
{ // Wait for a :

while(1)
{

while(!DataRdyU2());
if(RCREG2 == ':')

break;
}
Errors = 0; // Preset errors to 0
ByteCount = Hex8in(); // Read in ByteCount and store in Checksum
Checksum = ByteCount;
AddrL = Hex16in(); // Read in low word of address and add
Checksum += (unsigned char)AddrL; // to Checksum
DS91024A-page 4  1998 Microchip Technology Inc.

TB024

Checksum += ((unsigned char)(AddrL>>8));
RecType = Hex8in(); // Read in RecordType and add to Checksum
Checksum += RecType;
if(RecType == 0x00) // Data record
{

if(AddrH) // Assemble 16-bit word address
DHp = (rom int *)((AddrL>>1)+0x8000); // from AddrH and AddrL

else
DHp = (rom int *)(AddrL>>1);

bytes = ByteCount>>1; // get number of words in record
for(DHi=0;DHi<bytes;DHi++) // loop for number of words
{

 temp = Hex8in(); // Read in word of data and
HexData = (unsigned int)Hex8in(); // add to Checksum
Checksum += temp;
Checksum += (unsigned char)HexData;

 HexData <<= 8;
 HexData |= (unsigned int)temp;
 if(DHp > (rom int *)0x3fff) // If address in not in OTP
 { // then program
 while(1)

 {
 ProgPreamble(); // Program preamble

 *DHp = HexData; // write cycle
 while((HexData&0x0080) != (*DHp&0x0080)) // Wait for program cycle
 Nop(); // to terminate
 if(*DHp == HexData) // Make sure data was programmed

 break; // If not try to reprogram
 }

}
DHp++; // Increment address pointer

}
FChecksum = Hex8in(); // Read in LineChecksum
if(FChecksum != (~Checksum + 1)) // Compare to calculated

Errors = 1; // If not equal, increment errors
}
else if(RecType == 0x04) // Extended address record
{

AddrH = Hex16in(); // Read in 16-bits of address
Checksum += (unsigned char)AddrH; // and add to Checksum
Checksum += ((unsigned char)(AddrH>>8));
FChecksum = Hex8in(); // Read in Line Checksum
if(FChecksum != (~Checksum + 1)) // Compare to calculated

Errors = 1; // If not equal, increment errors
}
else if(RecType == 0x01) // End of file record
{

FChecksum = Hex8in(); // Read in LineChecksum
if(FChecksum != (~Checksum + 1)) // Compare to calculated

Errors = 1; // If not equal, increment errors
break;

}
}
return Errors; // Return number of errors

}

 1998 Microchip Technology Inc. DS91024A-page 5

TB024

FIGURE 3: FLOWCHART

Download Hex

AddrH = 0,

Received = :?

Read ByteCount and
store in LineChecksum

Read AddrL and
add to LineChecksum

Read RecType and
add to LineChecksum

ByteCount == 0?

Read HexData and
add to LineChecksum

1

2RecType == 0?

Errors = 0

Address = Address/2

ByteCount = ByteCount/2

Address > 3FFFh?

Write data to FLASH

Wait for FLASH to
finish programming

Program success?

Increment address

Read Checksum and
compare to LineChecksum

Result == 0?

Increment Errors

1

Erase FLASH

Write AAAAh to D555h

Write 5555h to AAAAh

Write 8080h to D555h

Write AAAAh to D555h

Write 5555h to AAAAh

Write 1010h to D555h

Wait for FLASH to erase

Return

No

Yes

No

Yes

Yes

No

No

Yes

3

No

Yes

Yes

No

4

DS91024A-page 6  1998 Microchip Technology Inc.

TB024

FIGURE 3 : FLOWCHART CONT’D

RecType == 4?

Read AddrH and
add to LineChecksum RecType == 1?

Read Checksum and
compare to LineChecksum

2

4Result == 0?

Increment Errors

Result == 0? Increment Errors

Return Errors

No

Yes

Yes

No

Yes

No

No

Yes

4

Read Checksum and
compare to LineChecksum

4

Return

3

Program Preamble

Write AAAAh to D555h

Write 5555h to AAAAh

Write A0A0h to D555h
 1998 Microchip Technology Inc. DS91024A-page 7

	Introduction
	FLASH Selection
	Microcontroller Configuration
	HEX File Format
	PICmicro Code

	HEX Download Code Written For MPLAB-C17
	Worldwide Sales and Service

