

M

TB025

Downloading HEX Files to PIC16F87X PICmicro

®

Microcontrollers
INTRODUCTION

The release of the PIC16F87X devices introduces the
first mid-range family of devices from Microchip Tech-
nology that has the capability to read and write to inter-
nal program memory. This family has FLASH-based
program memory, SRAM data memory and EEPROM
data memory. The FLASH program memory allows for
a truly reprogrammable system. Table 1 shows the fea-
tures of the PIC16F87X family of devices.

ACCESSING MEMORY

The read and write operations are controlled by a set of
Special Function Registers (SFRs). There are six
SFRs required to access the FLASH program memory:

• EECON1

• EECON2

• EEDATA

• EEDATH

• EEADR

• EEADRH

The registers EEADRH:EEADR holds the 12-bit address
required to access a location in the 8K words of pro-
gram memory. The registers EEDATH:EEDATA are used
to hold the data values. When reading program mem-
ory, the EEPGD bit (EECON1<7>) must be set to indicate
to the microcontroller that the operation is going to be
on program memory. If the bit is cleared, the operation
will be performed on data memory at the address
pointed to by EEADR. The EEDATA register will hold the
data. The EECON1 register also has bits for write enable
and to initiate the read or write operation. There is also
a bit to indicate a write error has occurred, possibly due
to a reset condition happening while a write operation
is in progress. Figure 1 shows the register map for
EECON1.

The EECON2 register is not a physical register. Reading
it will result in all '0's. This register is used exclusively
in the EEPROM and FLASH write sequences. Listing 1
shows the code snippet to initiate a write operation on
the PIC16F87X devices.

TABLE 1 PIC16F87X FAMILY FEATURES

Author: Rodger Richey
Microchip Technology Inc.

Key Features PIC16F873 PIC16F874 PIC16F876 PIC16F877

Operating Frequency DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz

Resets POR, BOR POR, BOR POR, BOR POR, BOR

Flash Prog Memory (14-bit words) 4K 4K 8K 8K

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256

Interrupts 13 14 13 14

I/O Ports Ports A,B,C Ports A,B,C,D,E Ports A,B,C Ports A,B,C,D,E

Timers 3 3 3 3

Capture/Compare/PWM modules 2 2 2 2

Serial Communications MSSP, USART MSSP, USART MSSP, USART MSSP, USART

Parallel Communications — PSP — PSP

10-bit Analog-to-Digital Module 5 input channels 8 input channels 5 input channels 8 input channels
 1998 Microchip Technology Inc. DS91025A-page 1

TB025

FIGURE 1: EECON1 REGISTER

HEX FILE FORMAT

The data to be programmed into program memory will
be read into the microcontroller using one of its stan-
dard interface modules: SPI, I2C™, USART, or PSP.
Probably the simplest format to send the data to the
microcontroller is in the standard HEX format used by
the Microchip development tools. The formats sup-
ported are the Intel HEX Format (INHX8M), Intel Split
HEX Format (INHX8S), and the Intel HEX 32 Format
(INHX32). The most commonly used formats are the
INHX8M and INHX32 and therefore are the only for-
mats discussed in this document. Please refer to
Appendix A in the MPASM User's Guide (DS33014) for
more information about HEX file formats. The differ-
ence between INHX8M and INHX32 is that INHX32
supports 32-bit addresses using a linear address
record. The basic format of the hex file is the same
between both formats as shown below:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9 character prefix and
always ends with a 2 character checksum. All records
begin with a ':' regardless of the format. The individual
elements are described below.

• BB - is a two digit hexadecimal byte count repre-
senting the number of data bytes that will appear

on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four digit hexadecimal address repre-
senting the starting address of the data record.
Format is high byte first followed by low byte. The
address is doubled because this format only sup-
ports 8-bits (to find the real PICmicro address,
simply divide the value AAAA by 2).

• TT - is a two digit record type that will be '00' for
data records, '01' for end of file records and '04'
for extended address record (INHX32 only).

• HHHH - is a four digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two digit hexadecimal checksum that is
the two's complement of the sum of all the pre-
ceding bytes in the line record.

Since the PIC16F87X devices only have a maximum of
8K words, the linear address record '04' is ignored by
the routine. The HEX file is composed of ASCII char-
acters 0 thorough 9 and A to F and the end of each line
has a carriage return and linefeed. The downloader
code in the PICmicro microcontrollers must convert the
ASCII characters to binary numbers to be used for pro-
gramming.

R/W-x U-0 U-0 U-0 R/W-x R/W-0 R/S-0 R/S-0
EEPGD — — — WRERR WREN WR RD R= Readable bit

W= Writable bit
S= Settable bit
U= Unimplemented bit,
read as ‘0’
- n= Value at POR reset

bit7 bit0

bit 7: EEPGD: Program / Data EEPROM Select bit
1 = Accesses Program memory
0 = Accesses data memory
 Note: This bit cannot be changed while a write operation is in progress.

bit 6:4: Unimplemented: Read as '0'

bit 3: WRERR: EEPROM Error Flag bit
1 = A write operation is prematurely terminated
 (any MCLR reset or any WDT reset during normal operation)
0 = The write operation completed

bit 2: WREN: EEPROM Write Enable bit
1 = Allows write cycles
0 = Inhibits write to the EEPROM

bit 1: WR: Write Control bit
1 = initiates a write cycle.
 The bit is cleared by hardware once write is complete.
 The WR bit can only be set (not cleared) in software.
0 = Write cycle to the EEPROM is complete

bit 0: RD: Read Control bit
1 = Initiates an EEPROM read (read takes one cycle)
 RD is cleared in hardware. The RD bit can only be set (not cleared) in software.
0 = Does not initiate an EEPROM read
DS91025A-page 2 1998 Microchip Technology Inc.

TB025

PICmicro Code

The sample downloader code does not specifically use
one of the interface modules on the PIC16F87X device.
Instead, a routine called GetByte retrieves a single
character from the HEX file over the desired interface.
It is up to the engineer to write this routine around the
desired interface. Another routine GetHEX8 calls Get-
Byte twice to form a two digit hexadecimal number.

One issue that arises is how many times to reprogram
a location that does not program correctly. The sample
code provided simply exits the downloader routine and
stores a value of 0xFF in the WREG if a program memory
location does not properly program on the first attempt.
The engineer may optionally add code to loop several
times if this event occurs.

Still another issue that is not specifically addressed in
the sample code is to prevent the downloader from
overwriting its own program memory address locations.
The designer must add an address check to prevent
this situation from happening.

Finally, the designer must account for situations where
the download of new code into the microcontroller is
interrupted by an external event such as power failure
or reset. The system must be able to recover from such
an event. This is not a trivial task, is very system
dependent, and is therefore left up to the designer to
provide the safeguards and recovery mechanisms.

Another error that could happen is a line checksum
error. If the calculated line checksum does not match
the line checksum from the HEX file, a value of 1 is
returned in WREG. The part of the routine that calls the
downloader should check for the errors 0xFF (could not
program a memory location) and 1. If program memory
is programmed correctly and no errors have been
encountered, the downloader routine returns a 0 in
WREG to indicate success to the calling routine. Figure
2 shows the flowchart for the downloader routines.
Listing 2 shows the complete listing for the downloader
code.

The routine ASCII2HEX converts the input character to
a binary number. The routine does not provide any out
of range error checking for incoming characters. Since
the only valid characters in a HEX file are the colon (:),
the numbers 0 through 9 and the letters A through F,
the routine can be highly optimized. It first subtracts 48
from the character value. For the ASCII numbers 0
through 9, this results in a value from 0 to 9. If the char-
acter is A through F, the result is a number greater than
15. The routine checks to see if the upper nibble of the
result is 0. If not 0, then the original value was A
through F and the routine now subtracts an additional
43 from the character resulting in the binary values 10
through 15. The colon is not accounted for in this rou-
tine because the main part of the downloader code
uses it as a line sync.

LISTING 1: FLASH WRITE SEQUENCE
bsfSTATUS,RP1 ; Bank2
bcfSTATUS,RP0
movfAddrH,W ; Load address into
movwfEEADRH ; EEADRH:EEADR
movfAddrL,W
movwfEEADR
bsfSTATUS,RP0 ; Bank3
bsfEECON1,EEPGD ; Set for Prog Mem
bsfEECON1,RD ; read operation
bcfSTATUS,RP0 ; Bank2
nop
movfEEDATA,W ; Data is read
… ; user can now
movfEEDATH,W ; access memory
…

 1998 Microchip Technology Inc. DS91025A-page 3

TB025

LISTING 2: HEX DOWNLOAD CODE WRITTEN FOR MPASM
 list p=16f877
 #include "c:\progra~1\mplab\p16f877.inc"

DownloadCode ;Uses USART to receive data from PC
 banksel RCREG
DCStart
 call GetByte
 movlw ':' ;Wait for colon
 subwf RCREG,W
 btfss STATUS,Z
 goto DCStart

 call GetHex8 ;Read byte count
 movwf ByteCount ;Store in register
 movwf LineChecksum ;Store in line checksum
 bcf STATUS,C
 rrf ByteCount,F ;Divide byte counter by 2 to get words

 call GetHex8 ;Read high byte of 16-bit address
 movwf AddrH
 addwf LineChecksum,F ;Add high byte to line checksum
 call GetHex8 ;Read low byte of 16-bit address
 movwf AddrL
 addwf LineChecksum,F ;Add low byte to line checksum

 call GetHex8 ;Read record type
 movwf RecType
 addwf LineChecksum,F ;Add to line checksum

DataRec ;Data reception
 movf RecType,F ;Check for data record (0h)
 btfss STATUS,Z
 goto EndOfFileRec ;Otherwise check for EOF
DRLoop
 movf ByteCount,F ;Check for bytecount = 0
 btfsc STATUS,Z
 goto DRCkChecksum ;If zero, goto checksum validation
 call GetHex8 ;Read lower byte of data (2 characters)
 movwf HexDataL ;Add received data to checksum
 addwf LineChecksum,F
 call GetHex8 ;Read upper byte of data (2 characters)
 movwf HexDataH ;Add received data to checksum
 addwf LineChecksum,F

WriteDataSequence ;Write sequence to internal prog. mem FLASH
 banksel EEADRH
 movf AddrH,W ;Write address to EEADRH:EEADR registers
 movwf EEADRH
 movf AddrL,W
 movwf EEADR
 movf HexDataH,W ;Write data to EEDATH:EEDATA registers
 movwf EEDATH
 movf HexDataL,W
 movwf EEDATA
 banksel EECON1 ;Write sequence
 bsf EECON1,EEPGD ;Set EEPGD to indicate program memory
 bsf EECON1,WREN ;Enable writes to memory
 bcf INTCON,GIE ;Make sure interrupts are disabled
 movlw 0x55 ;Required write sequence
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR ;Start internal write cycle
 nop
DS91025A-page 4 1998 Microchip Technology Inc.

TB025

 nop
 bcf EECON1,WREN ;Disable writes

 banksel EECON1 ;Read sequence
 bsf EECON1,EEPGD ;Set EEPGD to indicate program memory
 bsf EECON1,RD ;Enable reads from memory
 bcf STATUS,RP0
 nop
 movf EEDATH,W ;Compare memory value to HexDataH:HexDataL
 subwf HexDataH,W
 btfss STATUS,Z
 retlw 0xff ;If upper byte not equal, return FFh
 movf EEDATA,W ; to indicate programming failure
 subwf HexDataL,W
 btfss STATUS,Z
 retlw 0xff ;If lower byte not equal, return FFh
 ; to indicate programming failure
 incf AddrL,F ;Increment address for next iteration
 btfsc STATUS,Z
 incf AddrH,F
 decf ByteCount,F ;Decrement byte count
 goto DRLoop ;Go back to check for ByteCount = 0

DRCkChecksum ;Checksum verification
 call GetHex8 ;Read in checksum
 addwf LineChecksum,W ;Add to calculated checksum
 btfss STATUS,Z ;Result should be 0
 retlw 1 ; If not return 1 to indicate checksum fail
 goto DCStart ;Do it again

EndOfFileRec ;End of File record (01h)
 decf RecType,W ;If EOF record, decrement should = 0
 btfss STATUS,Z
 goto DCStart ;Not valid record type, wait for next :
 call GetHex8 ;Read in checksum
 addwf LineChecksum,W ;Add to calculated checksum
 btfss STATUS,Z ;Result should be 0
 retlw 1 ; If not return 1 to indicate checksum fail
 retlw 0 ;Otherwise return 0 to indicate success

GetByte
; Insert your code here to retrieve a byte of data from
; the desired interface. In this case it is the USART on F877.
;clear CTS
; banksel PIR1
;GH4Waitbtfss PIR1,RCIF
; goto GH4Wait
;set CTS
 nop
 banksel RCREG
 movf RCREG,W
 return

GetHex8 ;This function uses the USART
 call GetByte ;Read a character from the USART
 call ASCII2Hex ;Convert the character to binary
 movwf Temp ;Store result in high nibble
 swapf Temp,F

 call GetByte ;Read a character from the USART
 call ASCII2Hex ;Convert the character to binary
 iorwf Temp,F ;Store result in low nibble
 movf Temp,W ;Move result into WREG
 return
 1998 Microchip Technology Inc. DS91025A-page 5

TB025

ASCII2Hex ;Convert value to binary
 movwf Temp1 ;Subtract ASCII 0 from number
 movlw '0'
 subwf Temp1,F
 movlw 0xf0 ;If number is 0-9 result, upper nibble
 andwf Temp1,W ; should be zero
 btfsc STATUS,Z
 goto ASCIIOut
 movlw 'A'-'0'-0x0a ;Otherwise, number is A - F, so
 subwf Temp1,F ;subtract off additional amount
ASCIIOut
 movf Temp1,W ;Value should be 0 - 15
 return

 end
DS91025A-page 6 1998 Microchip Technology Inc.

TB025

FIGURE 2: FLOWCHART

Download Code

Get a single byte
GetByte

Character = :?

Read ByteCount and
store in LineChecksum

Divide by 2 to
get # of words

Read AddrH and
add to LineChecksum

Read AddrL and
add to LineChecksum

Read RecType and
add to LineChecksum

ByteCount = 0?

Read DataH and
add to LineChecksum

Read DataL and
add to LineChecksum

Decrement ByteCount

Record type = 0?

3

1

Yes

No

2

Read Checksum and
add to LineChecksum

Result = 0?

Return with W = 1

1

No

Yes

Yes

No

No

Yes

RecType = 1?

Read Checksum and
add to LineChecksum

Result = 0?

Return with W = 1

2

Return with W = 0

No

Yes

Yes No

1

3

Move AddrH:AddrL
into EEADRH:EEADR

Write 55h to EECON2

Move HexDataH:HexDataL
into EEDATH:EEDATA

Set EEPGD and WREN bits

Write AAh to EECON2

Set WR bit

Wait for EE Write complete

Set RD bit

RecType = 0?

EEDATH = HexDataH?

EEDATA = HexDataL?

Continue with program

Return with W = FFh

Return with W = FFh
No

No

Yes

Yes
 1998 Microchip Technology Inc. DS91025A-page 7

	Introduction
	Accessing Memory
	HEX File FormatT
	PICmicro Code
	Listing 1: FLASH Write Sequence
	Listing 2: HEX Download Code Written For MPASM

	Worldwide Sales and Service

