

M

INTRODUCTION

The PICmicro™ families of RISC microcontrollers are
designed to provide advanced performance and a
cost-effective solution for a variety of applications. To
address these applications, there is the PIC16CXXX
microcontroller family of products. This family has
numerous peripheral and special features to better
address user applications.

The feature this application note will focus on is the
Interrupt on Change of the PORTB pins. This “interrupt
on change” is triggered when any of the RB7:RB4 pins,
configured as an input, changes level. When this inter-
rupt is used in conjunction with the software
programmable weak internal pull-ups, a direct interface
to a keypad is possible. This is shown in application
note AN552, Implementing Wake-up on Key Stroke.
Another way to use the “interrupt on change” feature
would be as additional external interrupt sources. This
allows PIC16CXXX devices to support multiple external
interrupts, in addition to the built-in external interrupt on
the INT pin.

This application note will discuss some of the issues in
using PORTB as additional external interrupt pins, and
will show some examples. These examples can be eas-
ily modified to suit your particular needs.

Author: Mark Palmer
Microchip Technology Inc.
 1997 Microchip Technology Inc.
USING A PORTB INPUT FOR AN
EXTERNAL INTERRUPT

The interrupt source(s) cannot simply be directly
connected to the PORTB pins, and expect an interrupt
to occur the same as on the interrupt (INT) pin. To
develop the microcontrollers hardware/software to act
as an interrupt by an external signal, we must know the
characteristics of the external signal. After we know
this, we can determine the best way to structure the
program to handle this signal. The characteristics that
we need to consider when developing the interrupt
include:

1. The rising edge and falling edges.
2. The pulse width of the interrupt trigger (high time

/ low time).

It is easy to understand the need of knowing about
which edge triggers the interrupt service routine for the
external interrupt. This allows one to ensure that the
interrupt service routine is only entered for the desired
edge, with all other edges ignored. Not so clear is the
pulse width of the interrupt’s trigger. This characteristic
helps determine the amount of additional overhead that
the software routine may need.
Using the PORTB Interrupt on Change as an External Interrupt
AN566
DS00566B-page 1

AN566

Figure 1 shows the two cases for the interrupt signal
verses the time to complete the interrupt service
routine. The first waveform is when the signal makes
the low-to-high-to-low transitions before the interrupt
service routine has completed (interrupt flag cleared).
When the interrupt flag has been cleared, the interrupt
signal has already returned to the inactive level. The
next transition of the signal is due to another interrupt
request. An interrupt signal with this characteristic will
be called a small pulse width signal.

The second waveform is when the signal only makes
the low-to-high transitions before the interrupt service
routine has completed (interrupt flag cleared). The next
transition (high-to-low) will return the interrupt signal to
the inactive level. This will generate a “false” interrupt,
that will need to be cleared. Then the following
DS00566B-page 2
transition (low-to-high) will be a “true” interrupt. An
interrupt signal with this characteristic will be called a
wide pulse width signal.

An interrupt pulse with a small pulse width requires less
overhead than a wide pulse width. A small pulse width
signal must be less than the minimum execution time of
the interrupt service routine, while a wide pulse width
must be greater then the maximum time through the
interrupt service routine.

Example 1 shows a single interrupt source on PORTB
(RB7), which executes the interrupt service routine on
a rising edge. The interrupt source has a small pulse
width. In this case, since the interrupt pulse width is
small, the pulse has gone high and then low again
before PORTB is read to end the mismatch condition.
So when PORTB is read it will read a low signal and will
again be waiting for the rising edge transition.
FIGURE 1: INTERRUPT STEPS FOR SMALL AND WIDE PULSE WIDTHS

EXAMPLE 1: SINGLE INTERRUPT WITH A SMALL PULSE WIDTH

 PER_INT BTFSS INTCON, RBIF ; PortB interrupt?
 GOTO OTHER_INT ; Other interrupt
 : ; Do task for INT on RB7
 : ;
 CLR_RBINTF MOVF PORTB, 1 ; Read PortB (to itself) to end
 ; mismatch condition
 BCF INTCON, RBIF ; Clear the RB interrupt flag.
 RETFIE ; Return from interrupt
 OTHER_INT : ; Do what you need to here
 :
 RETFIE ; Return from interrupt

Small Pulse Width

Large Pulse Width

RBx

Rising Edge
Triggers Interrupt

PORTB Interrupt Service Routine is complete.
PORTB Interrupt Flag is cleared, mismatch is ended.
Wait for next interrupt edge.

Signal returns to “Inactive State”.

RBx

Rising Edge
Triggers Interrupt

PORTB Interrupt Service Routine is complete.
PORTB Interrupt Flag is cleared, mismatch is ended.
Wait for next interrupt edge.

Falling Edge
Triggers “False” Interrupt

PORTB Interrupt Service Routine is complete.
PORTB Interrupt Flag is cleared, mismatch is ended.
Wait for “False” interrupt edge.
 1997 Microchip Technology Inc.

AN566

Example 2 shows a single interrupt source on PORTB
(RB7), which executes the interrupt service routine on a
rising edge. The interrupt source has a wide pulse width.
In this case since the interrupt pulse width is large, the
pulse is still high before PORTB is read to end the
mismatch condition. So when PORTB is read it will read
a high signal and will generate an interrupt on the next
falling edge transition (which should be ignored).
 1997 Microchip Technology Inc.
EXAMPLE 2: SINGLE INTERRUPT WITH A WIDE PULSE WIDTH

 PER_INT BTFSS INTCON, RBIF ; PortB interrupt?
 GOTO OTHER_INT ; Other interrupt
 BTFSC PORTB, RB7 ; Check for rising edge
 GOTO CLR_RBINTF ; Falling edge, clear PortB int
 : ; flag
 : ; Do task for INT on RB7
 :
 CLR_RBINTF MOVF PORTB, 1 ; Read PortB (to itself) to end
 ; mismatch condition
 BCF INTCON, RBIF ; Clear the RB interrupt flag.
 RETFIE ; Return from interrupt
 OTHER_INT : ; Do what you need to here
 :
 RETFIE ; Return from interrupt

Example 3 shows an interrupt on change with the
interrupt source on PORTB (RB7). This executes the
interrupt service routine on a both edges. The interrupt
source must have a minimum pulse width to ensure that
both edges can be “seen”. The minimum pulse width is
the maximum time from the interrupt edge to the read-
ing of PORTB and clearing the interrupt flag.

EXAMPLE 3: INTERRUPT ON CHANGE

 PER_INT BTFSS INTCON, RBIF ; PortB interrupt?
 GOTO OTHER_INT ; Other interrupt
 CLR_RBINTF MOVF PORTB, 1 ; Read PortB (to itself) to end
 ; mismatch condition
 BCF INTCON, RBIF ; Clear the RB interrupt flag.
 : ; Do task for INT on RB7
 : ;
 RETFIE ; Return from interrupt
 OTHER_INT ; Do what you need to here
 :
 RETFIE ; Return from interrupt
DS00566B-page 3

AN566

USING PORTB INPUTS FOR
MULTIPLE INTERRUPTS

The previous examples have been for a single external
interrupt on PORTB. This can be extended to support up
to four external interrupts. To do this requires additional
software overhead, to determine which of the PORTB
pins (RB7:RB4) caused the interrupt. Care should be
taken in the software to ensure that no interrupts are lost.

In this example, the interrupt sources on RB7, RB5, and
RB4 have a small pulse width, while the interrupt
source on pin RB6 is wide and should cause a trigger
on the rising edge.
DS00566B-page 4
SUMMARY

The PORTB interrupt on change feature is both a very
convenient method for direct interfacing to an external
keypad, with no additional components, but is also
versatile in its uses the ability to add up to four
additional external interrupts. Of course hybrid solu-
tions are also possible. That is, for example, using
PORTB<6:1> as a 3x3 keypad, with PORTB<7> as an
external interrupt and PORTB<0> as a general purpose
I/O. The flexibility of this feature allows the user to
implement a best fit design for the application.
EXAMPLE 4: MULTIPLE INTERRUPTS WITH DIFFERENT PULSE WIDTHS

PER_INT BTFSS INTCON, RBIF ; PortB interrupt?
 GOTO OTHER_INT ; Other interrupt
;
; PortB change interrupt has occurred. Must determine which pin caused
; interrupt and do appropriate action. That is service the interrupt,
; or clear flags due to other edge.
;
 MOVF PORTB, 0 ; Move PortB value to the W register
 ; This ends mismatch conditions
 MOVWF TEMP ; Need to save the PortB reading.
 XORWF LASTPB, 1 ; XOR last PortB value with the new
 ; PortB value.
CK_RB7 BTFSC LASTPB, RB7 ; Did pin RB7 change
 CALL RB7_CHG ; RB7 changed and caused the interrupt
CK_RB6 BTFSC LASTPB, RB6 ; Did pin RB6 change
 CALL RB6_CHG ; RB6 changed and caused the interrupt
CK_RB5 BTFSC LASTPB, RB5 ; Did pin RB5 change
 CALL RB5_CHG ; RB5 changed and caused the interrupt
CK_RB4 BTFSC LASTPB, RB4 ; Did pin RB4 change
 GOTO RB4_CHG ; RB4 changed and caused the interrupt
;
RB7_CHG : ; Do task for INT on RB7
 : ;
 RETURN
RB6_CHG BTFSC PORTB, RB6 ; Check for rising edge
 RETURN ; Falling edge, Ignore
 : ; Do task for INT on RB6
 :
 RETURN
RB5_CHG : ; Do task for INT on RB5
 : ;
 RETURN
RB4_CHG : ; Do task for INT on RB4
 : ;
CLR_RBINTF MOVF TEMP, 0 ; Move the PortB read value to the
 MOVWF LASTPB ; register LASTPB
 BCF INTCON, RBIF ; Clear the RB interrupt flag.
 RETFIE ; Return from interrupt
;
OTHER_INT : ; Do what you need to here
 :
 RETFIE ; Return from interrupt
 1997 Microchip Technology Inc.

	Introduction
	Using a PortB input for an External Interrupt
	Using PortB Inputs for Multiple Interrupts
	Summary
	WORLDWIDE SALES & SERVICE

